
Lab15.md 2024-09-04

 / 

Design a Stopwatch

We want to design a stop watch, using a Finite State Machine, counting minutes and seconds, in the

following format.

00'00'' up to 99'59''

The stop watch digits should then be visible on the 4-digit 7-segment display on the Basys-3 board.

Exercise 1. Design the 7-segment display controller

Go to ~/labs/lab15 and open src/display-controller.vhd with a text editor.

kate src/display_controller.vhd & 

This is the module that should drive the actual display. The port interfaces are already de�ned.

Port Type Width Mode

clk std_logic 1 in

rst std_logic 1 in

digits t_digits 3 in

segment_anodes std_logic_vector 4 out

segment_cathodes std_logic_vector 8 out

Here t_digits is a type de�ned in the src/display_pkg.vhd �le, which is just an unconstrained array of

integers.

The display_controller can also be con�gured using the clocks_per_digit integer generic, which

declares how many clock cycles you need for each digit to update. By default is 400000, which is 4ms at 100

Mhz.

Follow the instruction in the code to implement the following functionalities.

1. Implement a state machine with the following states (IDLE, DIGIT0, DIGIT1, DIGIT2, DIGIT3).

2. Add a counter to keep track of the clocks per digits

3. Modify the synchronous process with the asynchronous reset

4. If the rst is high, set the state to IDLE, and all the bits of the segment anodes and cathodes signal to

1.

5. Increase the counter until reaching clocks_per_digit, then reset the counter and set the signal

next_digit to high, otherwise keep it low.

6. In the case, when state is:

1. IDLE, go to state DIGIT0, copy digits into a signal copy_digits and set

segment_anodes(0) to low. Set the segment cathodes, to the bit representation of



Lab15.md 2024-09-04

 / 

digits(0). You can use the digit_to_display function, de�ned in the

display_pkg.vhd

2. In DIGIT0, DIGIT1, DIGIT2 and DIGIT3, when next_digit is high go to the next digit state

(e.g. DIGIT0->DIGIT1), and set the corresponding anodes to low, and update the cathode signal

for the next digit. From DIGIT3 go back to IDLE, once receiving next_digit.

Once you �nish designing the module, you can run run_sim.sh, to validate the design.

Exercise 2. Implement the full design

Create a Vivado project for Basys-3 as in the previous labs.

In the Add Sources, add the entire content of lab15/src. Add also sim/tb_stopwatch.vhd and

set it as Simulation Only in the table.

In the Add constraint, add src/basys3.xdc

Once �nished, open the stopwatch.vhd �le, which should be our top �le.

The module should update the four digits of the stopwatch every second and continuously send them to the

instantiated display_controller module, we just designed. The output of the display controller, is

already wired to the output ports of the design. The RST port is connected to central push-button, the STOP

to the upper, and START to the down push-button.

Implement the following functionalities:

1. A state machine with states RESET, COUNT, PAUSE.

2. A counter to keep track of the seconds.

3. A synchronous process with asynchronous reset. If RST is high, go to RESET state. Otherwise, increase

the counter until reaching the CLOCKS_PER_SECOND constant, de�ned in the display_pkg. Then

reset the counter and set a signal increase_digit high, which will trigger the state machine.

Otherwise keep it low.

4. When the state is:

1. RESET, reset the counter and set the digits to (0,0,0,0). If START is 1, go to COUNT

2. COUNT, if increase_digit is 1, increase the digits, following the stopwatch order. If stop is

1, go to state PAUSE.

3. PAUSE, if START=1 go to COUNT.


