INTRODUCTION TO FPGA PROGRAMMING

LESSON 12: HARDWARE DEBUG

Dr. Davide Cieri¹

¹Max-Planck-Institut für Physik, Munich

September 2024

HARDWARE DEBUGGING ON FPGA

- Simulation and Verification tools provide an optimal way to debug an HDL design
- It is unavoidable sometimes to debug the design directly on hardware
 - E.g. when dealing with data from external sources that cannot be simulated
- Hardware Debugging is done using a set of data collecting IP provided by AMD

HARDWARE DEBUG WITH AMD FPGAS

- Hardware Debug using Vivado Hardware Manager
- It requires a JTAG connection to the FPGA
 - Platform USB cable I or II
 - Digilent cables
 - Our board has already the JTAG interface on board
- N.B. Adding hardware debug IPs alter your design!

- Integrated Logic Analyzer (ILA): monitors the internal signals of a design for sampling time
- Virtual Input/Output (VIO): monitors and drive internal signals in real time
- Integrated Bit Error Ratio Tester: Evaluates and monitors the data quality of a transceiver
- JTAG to AXI Master: Emulates to AXI transactions and drives the internal AXI signals¹

¹AXI is a common standard communication protocol, widely used in computing and FPGA. More in another lecture

- ILA records the value of internal signals
- Stores values in FPGA memory
 - Signals to monitors and Sample data depth can be configured
- Signal sampling is driven by trigger signals
 - Triggers can be setup also at run time
- Number of samples captured is based on an input clock
- Storage Requirements = no. samples * total bits of sampled signals

ILA IP

	Re-customize IP	- 0 ×
ILA (Integrated Logic Analyzer) (6.2)		4
O Documentation 🗇 IP Location C Switch to Defaults		
C there shaded parts	Compose the law (au)	
U Background task running on the design. Customization changes are not allowed		OK Cancel

ILA IP

- VIO blocks is used to manually drive values to signals in the design
- It can monitor real-time signals

VIO IP

	Custon	ize IP	- • ×
VIO (Virtual Input/Output) (3.0)			4
ODcumentation 🗁 IP Location C Switch to Defaults			
Show disabled ports	Component Name	vio_0	8
	To configure more than 64 probe ports use Viv General Options PROBE IN Ports(00)	PROBE OUT Ports(00)	
	Input Probe Count 1	0 - 256]	
dk probe_int(0:0) probe_out(0:0) -	Output Probe Count 1	[0 - 256]	
	Enable Input Probe Activity Detectors		
			OK Cancel

VIO IP

hw_vio_1 × hw_vio_2				? _			
Q 素 ≑ + −							
Name	Value	Activity	D ^1	VIO			
✓ IBUTTON_IBUF_1[3:2]	[H] 0		Input	hw_vio_1	^		
_F BUTTON_IBUF_1[3]	۹		Input	hw_vio_1			
_ BUTTON_IBUF_1[2]	٩		Input	hw_vio_1			
> 🍓 fast_vio_feedback_2[31:0]	[H] AA55_9966		Input	hw_vio_1			
∿ fast_vio_slice1_fb_2	۲		Input	hw_vio_1			
is fast_vio_slice5_fb_2[4:0]	[H] 00		Input	hw_vio_1			
<pre>_ fast_vio_slice5_fb_2[4]</pre>	•		Input	hw_vio_1			
<pre>_ fast_vio_slice5_fb_2[3]</pre>	•		Input	hw_vio_1			
<pre>_ fast_vio_slice5_fb_2[2]</pre>	•		Input	hw_vio_1			
<pre>_ fast_vio_slice5_fb_2[1]</pre>	•		Input	hw_vio_1			
<pre>_ fast_vio_slice5_fb_2[0]</pre>	•		Input	hw_vio_1			
> 🍓 fast_vio_slice200_fb_2[1	[H] 00_0000_0000		Input	hw_vio_1			
∿ slow2fast_ila_trig_ack_2	•		Input	hw_vio_1			
> 🍓 fast_cnt_count_1[31:0]	[H] 58C4_BC34	\$	Input	hw_vio_1			
Ist_vio_slice1a_fb_2	[B] 0		Input	hw_vio_1	~		

IBERT

- Integrated Bit Error Ratio Tester
- Determines the quality of a serial link, measuring the Bit Error Ratio and plotting Eye Diagrams
- The IP transmits pre-defined bit patterns to the transceiver and reads back the results
- If bits are different it increases the Bit Error Count (BEC)
- Eventually, calculates the total Bit Error Ratio (BER)
- BER can be plotted against time and voltage variation over many sample to produce the so called Eye Diagram
 - The more open the eye, the better is the link

EYE DIAGRAM

LAB 19: HARDWARE DEBUG

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4. ©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com
- nandland.com
- docs.amd.com
- https://www.symmetryelectronics.com/
- https://www.edn.com/
- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e
- www.icdesigntips.com
- techdocs.altium.com
- anysilicon.com
- Yngve Hafting 2021, University of Oslo