Lab19.md 2024-09-05

Lab 19: Hardware Debugging

In this lab we'll get familiar with the Integrated Logic Analyzer (ILA) and Virtual Input/Output (VIO) IPs from
Xilinx.

We will use the stopwatch design, we introduced in Lab 15. As a base.

Goto and open the project with Vivado.

vivado labl9.xpr &

Exercise 0. Implementing the design

Before starting the actual exercise, run the implementation, and take note of the resource usage.

Reminder: To get the resource utilization, open the implemented design and click on Report Utilization in the
sidebar.

Exercise 1. Use the ILA

In the first exercise, we want to monitor the signals coming in and out of the
module. These are:

Signal Type Width

digits_vec(0) std_logic_vector 4

digits_vec(1) std_logic_vector 4

digits_vec(2) std_logic_vector 4

digits_vec(3) std_logic_vector 4

RST std_logic 1
START std_logic 1
STOP std_logic 1
seg_anodes std_logic_vector 4

seg_cathodes std_logic_vector 8

Click on IP Catalog, on the left side bar, search for ILA and create a new ILA IP.

Lab19.md 2024-09-05

Customize IP B @ &
ILA (Integrated Logic Analyzer) (6.2) '

© Documentation 1P Location ' Switch to Defaults

[J show disabled ports Component Name |ila_0 |

|TD configure more than 64 probe ports use Vivade Tcl Conscle ‘

General Options Probe Ports(0..0)
Monitor Type

®) Mative AXI

MNumber of Probes |1 [1..10241

Sample Data Depth | 1024 v

[+) same Number of Comparators for All Probe Ports
ke
Number of Comparators | 1 “

probed[0:0]

(] Trigger Out Port
(] Trigger In Port

Input Pipe Stages 0 e

Trigger And Storage Settings

[CJ capture Control
] Advanced Trigger

GUI configuration mode is limited to 64 probe ports.
e

| OK | | Cancel |

In the General Options tab, write the correct number of probes in the corresponding box. Keep the default
for the other settings and go to the Probe Ports tab(s).

Modify the Probes' widths, to accommodate for the width of the signals that we want to monitor. Keep the
default For the other properties and click OK, once you are done.

Generate the IP, and wait until the output products are produced.

Now, instantiate the ILA IPs in your code inside the file, as usual, and map its port to the
correct signals to monitor.

Tip: You can use the function, declared in to convert a into a

Once you are done, run the implementation, and check again the resource utilization. What do you notice?
Generate now the bitstream, and load it to the board.

In the Program Device window, you should now see also the Debug Probe file box filled.

Lab19.md 2024-09-05

Program Device - 0o x

Select a bitstream programming file and download it to your hardware device. You can
opticnally select a debug probes file that corresponds to the debug cores contained in the ‘
bitstream programming file.

Bitstream file: a-course-tumdlabs-solutions/lab19/ab1 9.run5fimpl_1fztupwatch.bid

Debug probes file: |a-course-tum/labs-solutions/lab19/ab19.runsfimpl_1/stopwatch.|tx

[+ Enable end of startup check

'
A

-
5,

Program Cancel

Once you program it you will be prompted with the following screen.

Here, we have a waveform viewer, similar to the one we used in simulation, and on the bottom pad, the
controller for our trigger signals.

The ILA, will capture the data, once you click on the play button in the bottom left pad (Status). By default,
this will sample the signals at the moment the ILA receives the input you just gave it.

Alternatively, we can make the ILA capture the data, using a trigger signal.

On the right bottom pad Trigger Setup, click on the plus button. Here you can select one of the signal in the
ILA as a trigger. Let's select the START signal for instance.

It should then appearin the box. Click in the Value Cell, and change its value to B (Both Transitions). This
means that our trigger will run every time there is any transition on the START signal.

In the Status box on the left you can activate the trigger by clicking on the Play button > . You can also

L2
keep the trigger active indefinitely clicking on the re-trigger button

Click on Play. You should see that the status changes now to Waiting for Trigger. Push the START button on
the board, so the trigger will be enabled, and the waveform captured.

Exercise 2. Use the VIO

Click again in /P Catalog, and search VIO, and double click on the IP. You will be prompted with the
configuration screen.

Lab19.md 2024-09-05

Customize IP = =) &
VIO (Virtual Input/Output) (3.0) '
€) Documentation IF Location ' Switch to Defaults
[] show disabled ports Component Name vio_0

| To configure more than 64 probe ports use Vivado Tcl Console

General Options PROBE_IN Ports(0..0) PROBE_OUT Ports(0..0)

Input Probe Count |1 [0-256]
Output Probe Count |1 [0 - 256]

[+ Enable Input Probe Activity Detectors

clk
{pmhe n0j00] pmhe_uuﬂlﬂﬂ]}

| OK ‘ ‘ Cancel ‘

The VIO will allow us to drive signals directly from the hardware manager.
With this VIO, we want to manage the START, STOP and RESET signals directly, and monitor the four digits.

Therefore set the number of input probes to 4 and output probes to 3. In the PROBE IN tab, set the width of
each probes to 4. In the PROBE OUT, check that the widths of all probesis 1.

Click OK, and generate the output products.

Open now the file, and transform the RST, START, STOP ports to internal signals in the
architecture declaration part.

Instantiate the VIO, as usual, and map the ports. The input ports of the VIO should be connected to the
signals, while the output port to the , and control signals.

Since the VIO requires as inputs, connect them to the signals we
created before.

This time you also need to assign the values of the std_logic signals , and to the first index
of the std_logic_vector signals. E.g.

START <= START sl1lv(0);

Lab19.md 2024-09-05

Open now the constraint file and comment out any reference to the RST, START and STOP
ports.

Save everything, implement the design and regenerate the bitstream.
You can also have another look at the implemented design, to check for the difference in resource usage.

Open again the Hardware manager, load the new bitstream. This time you should also have tab for the VIO

(hw_vios).

hw_vios 7 -0 a X

hw_vio_1 ? _0OX

+

B

=]

=]

]

g

£

w

o

Click on the plus button and add all the signals in the list. Select all of them. Select all the control signals,
click with the right button, and set them Active-High Button. Select now the digit signals, right click, and set
the Radix as unsigned decimal.

Click now on the START button. You should see the stopwatch digits starting to increase both in the VIO and
on the 7-segment display on the board. Continue to play with the other control signals, to verify the correct
operation of the stopwatch.

