
Lab19.md 2024-09-05

 / 

Lab 19: Hardware Debugging

In this lab we'll get familiar with the Integrated Logic Analyzer (ILA) and Virtual Input/Output (VIO) IPs from

Xilinx.

We will use the stopwatch design, we introduced in Lab 15. As a base.

Go to ~/labs/lab19/ and open the project lab19.xpr with Vivado.

vivado lab19.xpr & 

Exercise 0. Implementing the design

Before starting the actual exercise, run the implementation, and take note of the resource usage.

Reminder: To get the resource utilization, open the implemented design and click on Report Utilization in the

sidebar.

Exercise 1. Use the ILA

In the �rst exercise, we want to monitor the signals coming in and out of the display_controller

module. These are:

Signal Type Width

digits_vec(0) std_logic_vector 4

digits_vec(1) std_logic_vector 4

digits_vec(2) std_logic_vector 4

digits_vec(3) std_logic_vector 4

RST std_logic 1

START std_logic 1

STOP std_logic 1

seg_anodes std_logic_vector 4

seg_cathodes std_logic_vector 8

Click on IP Catalog, on the left side bar, search for ILA and create a new ILA IP.



Lab19.md 2024-09-05

 / 

In the General Options tab, write the correct number of probes in the corresponding box. Keep the default

for the other settings and go to the Probe Ports tab(s).

Modify the Probes' widths, to accommodate for the width of the signals that we want to monitor. Keep the

default for the other properties and click OK, once you are done.

Generate the IP, and wait until the output products are produced.

Now, instantiate the ILA IPs in your code inside the stopwatch.vhd �le, as usual, and map its port to the

correct signals to monitor.

Tip: You can use the ToSLV function, declared in display_pkg.vhd to convert a std_logic into a

std_logic_vector.

Once you are done, run the implementation, and check again the resource utilization. What do you notice?

Generate now the bitstream, and load it to the board.

In the Program Device window, you should now see also the Debug Probe �le box �lled.



Lab19.md 2024-09-05

 / 

.

Once you program it you will be prompted with the following screen.

Here, we have a waveform viewer, similar to the one we used in simulation, and on the bottom pad, the

controller for our trigger signals.

The ILA, will capture the data, once you click on the play button in the bottom left pad (Status). By default,

this will sample the signals at the moment the ILA receives the input you just gave it.

Alternatively, we can make the ILA capture the data, using a trigger signal.

On the right bottom pad Trigger Setup, click on the plus button. Here you can select one of the signal in the

ILA as a trigger. Let's select the START signal for instance.

It should then appear in the box. Click in the Value Cell, and change its value to B (Both Transitions). This

means that our trigger will run every time there is any transition on the START signal.

In the Status box on the left you can activate the trigger by clicking on the Play button . You can also

keep the trigger active inde�nitely clicking on the re-trigger button .

Click on Play. You should see that the status changes now to Waiting for Trigger. Push the START button on

the board, so the trigger will be enabled, and the waveform captured.

Exercise 2. Use the VIO

Click again in IP Catalog, and search VIO, and double click on the IP. You will be prompted with the

con�guration screen.



Lab19.md 2024-09-05

 / 

The VIO will allow us to drive signals directly from the hardware manager.

With this VIO, we want to manage the START, STOP and RESET signals directly, and monitor the four digits.

Therefore set the number of input probes to 4 and output probes to 3. In the PROBE IN tab, set the width of

each probes to 4. In the PROBE OUT, check that the widths of all probes is 1.

Click OK, and generate the output products.

Open now the stopwatch.vhd �le, and transform the RST, START, STOP ports to internal signals in the

architecture declaration part.

Instantiate the VIO, as usual, and map the ports. The input ports of the VIO should be connected to the

digits_vec signals, while the output port to the RST, STOP and START control signals.

Since the VIO requires std_logic_vector as inputs, connect them to the std_logic_vector signals we

created before.

This time you also need to assign the values of the std_logic signals RST, STOP and START to the �rst index

of the std_logic_vector signals. E.g.

START <= START_slv(0); 



Lab19.md 2024-09-05

 / 

Open now the basys3.xdc constraint �le and comment out any reference to the RST, START and STOP

ports.

Save everything, implement the design and regenerate the bitstream.

You can also have another look at the implemented design, to check for the di�erence in resource usage.

Open again the Hardware manager, load the new bitstream. This time you should also have tab for the VIO

(hw_vios).

Click on the plus button and add all the signals in the list. Select all of them. Select all the control signals,

click with the right button, and set them Active-High Button. Select now the digit signals, right click, and set

the Radix as unsigned decimal.

Click now on the START button. You should see the stopwatch digits starting to increase both in the VIO and

on the 7-segment display on the board. Continue to play with the other control signals, to verify the correct

operation of the stopwatch.


