Lab23.md

Lab 23: MicroBlaze processor on Basys-3

2024-09-09

In this lab exercise, we will implement a MicroBlaze soft processor on the Artix-7 FPGA of the Basys-3 board,
and connect it to some GPIOs (Push Buttons, LEDs).

We will then program the processor, to control the GPIOs, using the Vitis Unified Software Platform.

Exercise 1. Create the HDL Design

Goto

section, choose RTL Project, and select:

¢ Inthe Add Constraints page, add

e Projectis an extensible Vitis platform

Once the project is generated, create a new block design, using the command on the left side bar.

Once you are in the Block Design context, click on the Board tab on the left window box.

and create a new project for the Basys-3 board, called MicroBlaze. In the Project Type

In this window, we can see all the available interfaces for the Basys-3 board. Dragging them into the Diagram

window, automatically constraints the pins, without the need of constraint file.

y *
File Edit Flow Tools
) -]

"

Flow Navigator

~ PROJECT MANAGER
¥ Settings
Add Sources
Language Templates

¥ 1P Catalog

v IP INTEGRATOR
Create Block Design
Open Block Design
Generate Block Design

Export Platform

v SIMULATION

Run Simulation

v RTLANALYSIS

> OpenElaborated Design

v SYNTHESIS
P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION
P RunImplementation

> OpenImplemented Desig

~ PROGRAM AND DEBUG
¥ Generate Bitstream

> OpenHardware Manager

MicroBlaze - [/home/dcieri/Work/fpga-course-tum/labs-solutions/lab23/MicroBlaze/MicroBlaze.xpr] - Vivado 2022.2
Window Layout

S TR - > X

View Help

Default Layout

voA X

Ready

BLOCK DESIGN - design_1

Sources Design Board x ?_00C

a T s »
B Basys3 ~

v [Clocks (0 out of 1 connected

Signals Platform Setup x| Diagram x

AR + 2 o+ C

@ System Clock
v [External Memory (0 out of 1 connected)
¥ QSPI Flash
~ [GPIO (0 out of 5 connected)
¥3 4 Push Buttons
¥ 7 Segment Display - Anodes
¥ 7 Segment Display - Segments
This design is empty. Press the

Board Component Properties ?7 00X

@ System Clock -3

Description: 100 MHz System Clock

General | Properties

Tcl Console x Messages Log

a T = Il B B @

i start_gui

) create_project MicroBlaze /home/dcieri/Work/fpga-course-tun/labs-solutions/1ab23/MicroBlaze -part xc7a35tcpg23s-1
. INFO: [IP_Flow 19-234] Refreshing IP repositories

. INFO: [IP_Flow 19-1704] Mo user IP repositories specified

INFO: [IP_Flow 19-2313] Loaded Vivade IP repository '/opt/Xilinx/Vivado/2022.2/data/ip’.
set_property hoardiparjt d1q119nt1nc.com:ha:ysB:partO:l‘z [current_project] .

Reports | Design Runs ?

set_property platform.extensible true [current_project]
;. set_property target_language VHDL [current_project]
J create_bd_design "design_1"
Wrote : </home/dcieri/Work/fpga-course-tum/labs-solutions/lab23/MicroBlaze/MicroBlaze.srcs/sources_1/bd/design_l/design_1.bd=
. update_compile_order -fileset sources_1

<

Lab23.md

2024-09-09

Drag the system clock into the design window. Click then on Run Connection Automation, and confirm with

OK in the pop-up window.
Double click on the clk_wiz_0 block, to confirm that the output clock clk_out?is 100 MHz.
Click now on the plus button and add the MicroBlaze IP. Click then on Run Block Automation.

A pop-up window will appear that let us configure the MicroBlade processor.

PR 4 Run Block Automation ~

Automnatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration options on the right.

Q - -
= -

w [All Automation (1 out of 1 selected)

Description

MicroBlaze connection automation generates local memory of selected size, and caches can be configured.
MicroBlaze Debug Module, Peripheral AXI Interconnect, Interrupt Controller, a clock source, Processor System
Reset are added and connected as needed. A preset MicroBlaze configuration can also be selected.

[+ = microblaze_0

Information about the options can be found in the tooltips.

Options
Preset None v
Local Memary 8KB v
Local Memaory ECC None v
Cache Configuration None v
Debug Medule Debug Only -
Peripheral AXI Port Enabled
[_] Interrupt Controller
Clock Connection felk_wiz_0iclk_out? (100 MHz) w

\l(_.\l C ‘
\E/ ance

>

Set the local memory to 32kB and click OK. Now drag to the diagram the 16 LEDs. This will create an AX/

GPIO block, called axi_gpio_0. Click on the new block, and rename it in the properties box

Now click on the plus button, and add another AX/ GP/O block. Double click on it, to open the IP

configuration page. Go to the /P Configuration tab, select All Inputs, set the Width to 4, and disable the dual

Channel. Confirm with OK. Then rename the IP, axi_gpio_btn.

Lab23.md

2024-09-09

AXIGPIO (2.0)

@ Documentation IP Location

[Show disabled ports

Board IP Configuration

GPIO

All Inputs

GPIO Width

Default Output Value

Default Tri State Value
vl S
5_axi_aclk GPIO + " () Enable Dual Channel
5_axi_aresetn P02
GPIO Width

Default Output Value

Default Tri State Value

[_] Enable Interrupt

gy * Re-customize IP

Component Name |axi_gpio_button

4

0x00000000

OXFFFFFFFF

32

0x00000000

OXFFFFFFFF

11-32]

0| [0x00000000,0xFFFFFFFF]

0| [0x00000000,0xFFFFFFFF]

I1-32]

8| [0xD0000000,0xFFFFFFFF]

B [0xD0000000,0xFFFFFFFF]

Back on the Block Diagram, select the GPIO port of the axi_gpio_button, right click and select Make External.

This should connect the port with an external interface (GPIO_0 by default). Click on the interface, and

rename it

Click again on Run Block Automation and select all the blocks. Now open the Platform Setup tab. You should

see a couple of Warning point in the left sidebar.

Lab23.md 2024-09-09

Platform Setup

Settings Clock

@ AXIPort = M
Name Enabled D Is Default ProcSys.. Status Frequency
~ External Interfaces

@ Clock -
sys_clock O

v clk wiz_0 (Clocking Wizard:6.0

« Platform Name clk_outt

@ Error: There must be at least one enabled clock interface.
@ Error: There must be a default clock.

| Export Platform...

Select Clock, then enable the signal, and set it as default. Ignore the error on the AXI port, since

we don't have any AXI ports that can be made available in our design.
Save the design, and click on the Validate icon & to verify.

Open now the Sources tab, from the project manager. Right click on the block design file (by default
), and select Create HDL Wrapper. Once the wrapper is generated, click on Generate Bitstream.

Once the bitstream is generated, we have to export the hardware platform Ffiles. Click on File > Export >
Export Platform. This tool will export the platform, that could be later used inside Vitis, to program our

embedded processor.

Lab23.md 2024-09-09

g * Export Hardware Platform WA XK

Export Hardware Platform

VIVADO!

ML Editions This wizard will guide you through the export of a hardware platform for use in the Vitis or PetaLinux
software tools.

To export a hardware platform, you will need to provide a name and lecation for the exported file and
specify the platform properties.

& XILINX

Configure it as follow:

« In the Platform Type Window, select Hardware

 Inthe Platform State window, select *Pre-synthesis, and tick the /nclude bitstream box
« Give areasonable name in the Platform Properties window, and keep the rest as default
o Continue and click on Finish

Exercise 2. Program the MicroBlaze processor with Vitis

Click now on the toolbar of Vivado Tools > Launch Vitis. If this is the first time you launch Vitis, you should
be prompted with the welcome page.

Lab23.md

2024-09-09

d * workspace - mbla/src/helloworld.c - Vitis IDE
File Edit Search Xilinx Project Window Help

& | O welcome 22

W XILINX

a VITIS

VITIS
IDE

I I
PROJECT PLATFORM
Create Application Project Add Custom Platform

Create Platform Project

Create Library Project

Import Project

RESOURCES

Vitis Documentation

Xilinx Developer

Select Create Application Project. This will open another wizard window, that guides you in the creation of an

application. Configure it with the following instructions:

1. Click Next in the Create a New Application Project Page.

2. In the Platform page, select the tab Create a new platform from hardware (XSA), click on Browse, and

select the xsa file, contained in the Vivado project folder in .
3. In Application Project Details, provide a name for your project, and click Next
4. In Domain keep the default an click Next
5. In the Templates, choose Hello World and click Finish.

You should now be in the main project window of Vitis.

Lab23.md

2024-09-09

-

o~ -] ~

workspace - microblaze_Sw/microblaze_Sw.prj - Vitis IDE

File Edit Search Xilinx Project Window Help

D@ -0~ 9~

G-

Q [& Design % Debug

« Expmrerzﬂ Efw 8 =0

> Bl design_1_wrapper_1

~ E microblaze_Sw_system [design_1

V{%m\(mblazsisw[f'a dalone
> il Includes
> &src
> & _ide

27 microblaze_Sw.prj

& microblaze_Sw_system.sprj

«J Assistant Eﬂ =8

B R Y
Bl design_1_wrapper_1 [Pla]

o 5m\(rublazejwﬁsystsm IS
>$m\crnblaze,§w [Ap|

% Emulation-SW

A Emulation-HW

& Hardware

microblaze_Sw E@W

8= outline 3 = B8

%« Application Project Settings

General

Project name: mic

Platform:

Runtime: pp

Domain: standalone_microblaze_0
CPU: microblaze_0

os: standalone

Active build configuration:| Debug A

Options

View current BSP settings, or configure settings like STDIO
peripheral selection, compiler flags, SW intrusive profiling, adds
remove libraries, assign drivers to peripherals, change versions
of OS/libraries/drivers etc.

Navigate to BSP Settings

Hardware Specification: View processors, memery ranges and peripherals.

2

There is no active editor
that provides an outline.

& Console 23]\1 Problems Vitis Log @ Guidance

CDT Global Build Console

LRl = el

M el =%

dialog...

“2 Indude Browser | 47 Search %2

No search results available. Start a search from the searc|

= B8

-

In the Explorer box on the left, you should see our hardware platform, imported from Vivado, and the new

application we just created.

If you expand the
file and have a

look at its content.

This is a simple C code, that will print "Hello World" on screen.

Now connect the board to your pc, and open a minicom terminal.

minicom -D /dev/ttyUSBl -b 9600

folder of your application, you should see the actual source files. Open the

Push a button on the board, to verify that the connection works. The default firmware should print

something.

Keep it the terminal open and visible, and go back to Vitis.

In the bottom left box (Assistant), expand your application, right click on Hardware, and select Build.

Once it is done, click with the right button on your application, and select Run > Launch Hardware.

If everything went well, you should see the Hello World string appearing in the minicom terminal.

If you get an error, close the pop-up window, power-down and power-up the board, and try again.

Lab23.md 2024-09-09

H ~ solutions-fpga-course-labs : minicom — Konsole v oA X
T2 NewTab [I] split view ~ B paste Q Find =

Francisco : bash % solutions-fpga-course-labs : minicom

Welcome to minicom 2.9

OPTIONS: Ii8n
Port /dev/ttyUSB1, 14:28:23

Press CTRL-A Z for help on special keys

Helle world
Successfully ran Hello World applh:atmn[l

CTRL-A Z for help | 9680 8N1 | NOR | Minicom 2.9 | vT182 | offline | ttyUSB1

Exercise 3. Drive the GPIO with MicroBlaze

In Vitis, click on File->New->Application Project to create another application.

e In the Platform page, select the same platform from before
« Give it another name in the Application Project Details page
e Inthe Templates page, select Empty Application C

Now select the folder of your new Application in the Explorer window, right click and select Import
Sources.
Select then the folder ,and import the file.

Have a look, at this file, to understand what we are doing.

The script initialises the LED / Button GPIOs, using the addresses in the AXI memory, which have been

defined in our Vivado Block Diagram and exported to Vitis. (function)
With the function, we declare if the GPIO is an input (1) or output interface (0).
In the loop, we continuously check for the values of the buttons, and if any of them is pushed, we

switch on the first four LEDs.

Build now the project, as we did before, and run it on the hardware, to verify that works.

Lab23.md 2024-09-09

Modify now the code, to implement the following behaviour:

o Ifbutton 0
 |f button 1
o Ifbutton 2
o Ifbutton 3

BTN UP) is pushed, switch on the first 4 leds
BTN RIGHT), leds 4-7

BTN DOWN), leds 8-11

BTN LEFT), leds 12-15

P

