
Lab23.md 2024-09-09

 /

Lab 23: MicroBlaze processor on Basys-3

In this lab exercise, we will implement a MicroBlaze soft processor on the Artix-7 FPGA of the Basys-3 board,

and connect it to some GPIOs (Push Buttons, LEDs).

We will then program the processor, to control the GPIOs, using the Vitis Uni�ed Software Platform.

Exercise 1. Create the HDL Design

Go to ~/labs/lab23 and create a new project for the Basys-3 board, called MicroBlaze. In the Project Type

section, choose RTL Project, and select:

In the Add Constraints page, add src/basys3.xdc

Project is an extensible Vitis platform

Once the project is generated, create a new block design, using the command on the left side bar.

Once you are in the Block Design context, click on the Board tab on the left window box.

In this window, we can see all the available interfaces for the Basys-3 board. Dragging them into the Diagram

window, automatically constraints the pins, without the need of constraint �le.

Lab23.md 2024-09-09

 /

Drag the system clock into the design window. Click then on Run Connection Automation, and con�rm with

OK in the pop-up window.

Double click on the clk_wiz_0 block, to con�rm that the output clock clk_out1 is 100 MHz.

Click now on the plus button and add the MicroBlaze IP. Click then on Run Block Automation.

A pop-up window will appear that let us con�gure the MicroBlade processor.

Set the local memory to 32kB and click OK. Now drag to the diagram the 16 LEDs. This will create an AXI

GPIO block, called axi_gpio_0. Click on the new block, and rename it in the properties box axi_gpio_led.

Now click on the plus button, and add another AXI GPIO block. Double click on it, to open the IP

con�guration page. Go to the IP Con�guration tab, select All Inputs, set the Width to 4, and disable the dual

Channel. Con�rm with OK. Then rename the IP, axi_gpio_btn.

Lab23.md 2024-09-09

 /

Back on the Block Diagram, select the GPIO port of the axi_gpio_button, right click and select Make External.

This should connect the port with an external interface (GPIO_0 by default). Click on the interface, and

rename it BTN.

Click again on Run Block Automation and select all the blocks. Now open the Platform Setup tab. You should

see a couple of Warning point in the left sidebar.

Lab23.md 2024-09-09

 /

Select Clock, then enable the clk_out1 signal, and set it as default. Ignore the error on the AXI port, since

we don't have any AXI ports that can be made available in our design.

Save the design, and click on the Validate icon to verify.

Open now the Sources tab, from the project manager. Right click on the block design �le (by default

design_1), and select Create HDL Wrapper. Once the wrapper is generated, click on Generate Bitstream.

Once the bitstream is generated, we have to export the hardware platform �les. Click on File > Export >

Export Platform. This tool will export the platform, that could be later used inside Vitis, to program our

embedded processor.

Lab23.md 2024-09-09

 /

Con�gure it as follow:

In the Platform Type Window, select Hardware

In the Platform State window, select *Pre-synthesis, and tick the Include bitstream box

Give a reasonable name in the Platform Properties window, and keep the rest as default

Continue and click on Finish

Exercise 2. Program the MicroBlaze processor with Vitis

Click now on the toolbar of Vivado Tools > Launch Vitis. If this is the �rst time you launch Vitis, you should

be prompted with the welcome page.

Lab23.md 2024-09-09

 /

Select Create Application Project. This will open another wizard window, that guides you in the creation of an

application. Con�gure it with the following instructions:

1. Click Next in the Create a New Application Project Page.

2. In the Platform page, select the tab Create a new platform from hardware (XSA), click on Browse, and

select the xsa �le, contained in the Vivado project folder in ~/labs/lab23.

3. In Application Project Details, provide a name for your project, and click Next

4. In Domain keep the default an click Next

5. In the Templates, choose Hello World and click Finish.

You should now be in the main project window of Vitis.

Lab23.md 2024-09-09

 /

In the Explorer box on the left, you should see our hardware platform, imported from Vivado, and the new

application we just created.

If you expand the src/ folder of your application, you should see the actual source �les. Open the

helloworld.c �le and have a look at its content.

This is a simple C code, that will print "Hello World" on screen.

Now connect the board to your pc, and open a minicom terminal.

minicom -D /dev/ttyUSB1 -b 9600

Push a button on the board, to verify that the connection works. The default �rmware should print

something.

Keep it the terminal open and visible, and go back to Vitis.

In the bottom left box (Assistant), expand your application, right click on Hardware, and select Build.

Once it is done, click with the right button on your application, and select Run > Launch Hardware.

If everything went well, you should see the Hello World string appearing in the minicom terminal.

If you get an error, close the pop-up window, power-down and power-up the board, and try again.

Lab23.md 2024-09-09

 /

Exercise 3. Drive the GPIO with MicroBlaze

In Vitis, click on File->New->Application Project to create another application.

In the Platform page, select the same platform from before

Give it another name in the Application Project Details page

In the Templates page, select Empty Application C

Now select the src folder of your new Application in the Explorer window, right click and select Import

Sources.

Select then the folder lab23/src, and import the gpio.c �le.

Have a look, at this �le, to understand what we are doing.

The script initialises the LED / Button GPIOs, using the addresses in the AXI memory, which have been

de�ned in our Vivado Block Diagram and exported to Vitis. (XGpio_CfgInitialize function)

With the XGpio_SetDataDirection function, we declare if the GPIO is an input (1) or output interface (0).

In the while loop, we continuously check for the values of the buttons, and if any of them is pushed, we

switch on the �rst four LEDs.

Build now the project, as we did before, and run it on the hardware, to verify that works.

Lab23.md 2024-09-09

 /

Modify now the code, to implement the following behaviour:

If button 0 (BTN UP) is pushed, switch on the �rst 4 leds

If button 1 (BTN RIGHT), leds 4-7

If button 2 (BTN DOWN), leds 8-11

If button 3 (BTN LEFT), leds 12-15

