INTRODUCTION TO FPGA PROGRAMMING

LESSON 16: ADVANCED FPGA ToPICS

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

September 2024 MAX-PLANCK-INSTITUT %
FUR PHYSIK ApDgzt

INTRODUCTION

This lecture shows an overview of other advance FPGA topics, that we didn’t have time to
cover during the course

| will not provide too many details

Starting point for further studies

ADVANCED VERIFICATION METHODOLOGIES

Verification is crucial for ensuring the correctness of VHDL designs
VHDL already provides standard features to automatise your test-benches
Methodologies (Libraries) provide structured approaches to verification.

UVVM and OSVVM are two popular methodologies in the VHDL community.

UVVM AND OSVVM

UVVM

UVVM (Universal VHDL Verification Methodology) and OSVVM are both free, open-source
methodology for VHDL verification.

They aim to simplify and standardize the verification process.
Provide a set of libraries and tools for writing and managing testbenches

Both requires simulator with full support to VHDL-2008 (no Vivado)

https://www.uvvm.org/
https://osvvm.org/

COCOoTB

COroutine based COsimulation TestBench
(CocoTB)

Runs python code concurrently and
synchronously to the simulation

No HDL testbench needed

All python packages available
Use cases

Python golden model
Connect real hardware

Low simulation performance (longer
execution)

No support to Vivado simulator (yet)

https://www.cocotb.org/

VUNIT

\'

Open source unit testing framework for VHDL/SystemVerilog
Workflow:

Scan through all files in a folder and build a dependency tree

VUnit - Python based Test Runner

Search for testbenches

Compile the sources in the correct order
Start the simulation (in parallel)

Report the test results

https://vunit.github.io/

AXI

AXI (Advanced eXtensible Interface) is an
interface protocol defined by ARM.

Nearly every Xilinx IP uses an AXI Interface
Three types of AXI4-Interfaces:

AXI4 (Full AX14): For high-performance
memory-mapped requirements. ' ‘ '

AXI4-Lite: For simple, low-throughput
memory-mapped communication (for

example, to and from control and status
registers).

AXI4-Stream: For high-speed streaming data

AX1 READ AND WRITE CHANNELS

The AXI protocol defines 5 channels:

Two for Read transactions:

Read Address

Read Data o5
Three for Write Transactions: Master

Write Address

Write Data

Write Response

Address

Address

Response

AX1 READ AND WRITE TRANSACTIONS

AXI Master always initiates the transactions

Multiple data can be transmitted on the same AXI address (burst)

Address
and contrel

Address
and control

—

AXI

—

Master

Read data

Write data

Write data

Read data

——

 —

 —

Mp—

Write
response

—

AXI REALITY

‘myip_v1_Oxhd
home/dcieriip-repo-tests/myip_1_O/hdUmyip.v1 _0vhd x
Q W « ~ X 8 B X/ EOQ L
a ~u
2 Ports of Axi Master Bus Interface NS_AXT
E R00_axi_init_axi_tan in std logic:
3 out std_logic:
EY out std Togic;
E in st Toaic
Ed in stal
E Ut 'std_Togic._vectar (c_HGo_AT_TO_WICTH-1 dovnto):
3 out st Logic_vector (CHOO_KKT 405R WIDTH- downto 0);
ry out std_Logic_vector (7 downto 0):
a ot S legicvector(3 dots 0
) out std_logic_vector (1 downto 0);
4 t jic
a out std_Logic_vector (3 downto 0);
a5 out std Logic vector(z dawnto
a5 out std_logic_vector (3 downto 0);
a7 S0t S Logicvector (100 VI AMISER MIDTH-L downto O);
a ot st legic:
a9 in std T
s0 Ut 5t Togic_vector (C_HGo_AXT_DATA_WIOTH-L downto 0);
s out std_Logic_vector (C_NOO_AXT_DATA_WIDTH/8-1 downto 0);
E aut std_Logic
53 out std_} loqu Vector (C_HO0_AXI_WUSER WIOTH-1 downto 0):
st out std 1
S5
B std Vector (C_H00_AXI_ID WIDTH-1 downto 0):
57 e agac vector (1-anerte 0);
Bl i std_logic_vector (C_H00_AXI_BUSER WIDTH-1 downto 0);
5 in std logic:
& out st L
6 aut std_logic_vector (C_H0O_AXI_ID WIDTH-1 downto 0):
62 out std_Logic_vector (C_HOC_AXI_ADOR_WIDTH-1 downto 0);
& out std_logic_vector (7 dowito 0);
6 out std_logic_vector (2 downto 0);
& out std_logic_vector (1 downto 0):
6 out std_Logic
&7 aut std_logic_vector (3 downto 0):
& out std_logic_vector (2 downto 0);
& R0 e Targos vt std Togic vector(downto
7 A00 axiTaruser + out st logic_vector (C_HOO_AXI_ARUSER WIDTH-1 downto 0)
n 700_axi arvalid ¢ out std logic;
7 00 axi_arread) Togic:
7 00 ex1rid : in std logic_vector (C_H0O_AXI_ID WIDTH-1 downto 0):
7 00 exi rdata : in std_logic_vector (C_HOO_AXE_DATA WIOTH-1 downto 0);
] a0 eri sy in stdlogic vector (1 downto 0);
7 00 axirlast : in std_Logie
7 s g ruser in st \.x;m vector (C_00_AXI_RUSER WIDTH-1 downto 0);
% 00_axi_rvalid st Logic
7 MO0 pei rready | out stdlegic
)
end nyip_v1_0;
architectura arch ian af mvin v1 0 is v
< >

10/17

PARTIAL RECONFIGURATION

FPGA

Reconfig
Block A

Partial Reconfiguration or Dynamic Function eXchange, allows for reconfiguration of
modules within an active design

Afull bitstream is loaded on the FPGA, including FPGA regions that can be reconfigured
Partial bitstream is loaded on the FPGA (dynamic configuration) during operation, to
modify reconfigurable regions

https://docs.amd.com/r/2022.2-English/ug909-vivado-partial-reconfiguration/Navigating-Content-by-Design-Process

HIGH LEVEL SYNTHESIS

- Major vendor provides tool to
translate C/C++ code into RTL
+ Xilinx AMD Vitis HLS

Write code in C++/ C/ System C
Code converted by Vitis HLS into RTL
C simulation available to validate
functionalities

Eventually, RTL is packed in an IP,
and can be implemented in Vivado

c/ 3

AMDn HLS Tool

Vitis

</>

C/C++ for HLS

—

RTL Code

12/17

https://www.amd.com/de/products/software/adaptive-socs-and-fpgas/vitis/vitis-hls.html

MACHINE LEARNING ON FPGAS

Due to their ability of processing large chunks of data in parallel, FPGAs are ideal to infe
machine learning algorithms
Different options for the implementations:

Write your own VHDL implementation of the algorithm
Vitis-Al
HLS4ML

VITIS Al

AMD Vitis™ Al Integrated Development Environment

Vitis™ Al !
ONNX
Tools & i * RUNTIME
Components |
“tvm

L

Domain-
Specific
Architectures

Supported AMDD1 AMDD1 AMDQ AMDD
Targets YERSAL RYZEN Al

HLS4ML

hils 4 ml

HLS4ML is a python package that translates machine learning models into C++ code for HLS
Optimizes the algorithm for FPGA implementation

Executes Vitis-HLS within python, to run synthesis and IP exportation

https://fastmachinelearning.org/hls4ml/

CONTINUOUS INTEGRATION AND VERSION CONTROL

.2

Hog

Source code control in VHDL project is fundamental, especially in large collaboration

Even small changes in the design, can result in large differences in the implementations
Vivado projects are not git-friendly (long xml files)

Hog (HDL-on-Git) is an open-source tool, that help maintaining HDL projects with git

It also provides templates for Continuous Integration workflow, building and simulating HDL
projects

https://cern.ch/hog

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/

- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- adafruit.com

- www.icdesigntips.com

- techdocs.altium.com

- anysilicon.com

- Yngve Hafting 2021, University of Oslo

- WWw.mvomron.com

