The Emergent String Conjecture and Universal Properties in Quantum Gravity

Timo Weigand, Colloquium at Max-Planck-Institute for Physics, Munich, 24/09/2024

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Fundamental physics is experiencing extraordinary times:

Triumphant success of

Standard Model of Particle Physics

ATLAS, 2207.00092

Standard Model of Cosmology (ACDM)

Fundamental physics is experiencing extraordinary times:

Triumphant success of

Standard Model of Particle Physics

Quantum field theory/ **Quantum gauge theory**

> microscopic scales

Standard Model of Cosmology (ACDM)

Classical **General Relativity**

astronomical/ cosmological scales

Length scales

Fundamental physics is experiencing extraordinary times:

Deep theoretical and conceptual challenges

What is the reason for matter-antimatter asymmetry?

Why are there hierarchical couplings in the SM?

> Reason for hierarchy between electroweak scale and Planck scale? Why is gravity to so weak?

Motivation

Nature of Dark Matter?

Origin of cosmic acceleration? Nature of Dark Energy? What explains its scale?

Key conceptual question: How to describe gravity as a quantum theory?

$$S_{\rm EH} = \frac{1}{2\kappa_4^2} \int_{\mathbb{R}^{1,3}} \sqrt{-g} R + \dots$$

Quantum gravity as theory of spin-2 fields is not perturbatively renormalisable.

 \implies Effective field theory valid at energy

Among the technical problems: UV divergences in gravity

Dimensionful
Coupling:
$$\kappa_4 = \frac{1}{M_{\text{Planck}}} = (8\pi G_N)^{1/2}$$

gies below cutoff
$$\Lambda_{\rm QG} \sim M_{\rm Planck} \sim 10^{19}\,{\rm Ge}$$

Top down approach to Quantum Gravity :

- Reproduces at low energies gauge theory and classical Einstein gravity
- ✓ Perturbatively free of ultra-violet divergences
- ✓ Unique as a theory up to dualities: no free parameters
- ✓ Study of its rich vacuum structure in lower dimensions makes contact with frontiers in modern geometry
- \implies String compactifications may provide UV completion for particle physics and cosmological evolution of the Universe.

String Theory as currently best developed candidate

X

Motivation

Goal: Development of new stringy mechanisms to address challenges in particle physics and cosmology

- Generation of hierarchically small couplings via stringy instantons \bullet new effects not based on strong gauge dynamics Applications e.g. to neutrino masses [Blumenhagen, Cvetic, TW'06] [lbanez,Uranga'06]
- Development of F-theory as a non-perturbative framework for string compactifications:
 - including new ideas for Grand Unified Theories (GUTs)
 - along with developing technology in algebraic geometry

[Krause, Mayrhofer, TW'11]

SU(2)-curve

Motivation

SWAMPLAND:

coined by **[Vafa'05]**

Effective field theories consistent as QFTs, but with no UV completion as a quantum gravity

Infinite set of theories

 \implies Limited predictive power

Bottom up approach: Can we identify general principles which a theory with a UV completion as a QG theory must satisfy?

LANDSCAPE:

Effective field theories arising as low-energy limit of fully consistent quantum gravity

Hope: Finite set of theories \implies Improved predictive power

Arguments oftentimes conjectural in full generality and based on insights on black hole physics

- Quantitative tests possible in string theory, e.g. based on properties (quantum) geometry of compactifications
- \implies connection to mathematics and even predictions for mathematics (see later)

Motivation

Two key types of observations:

Gravity can cease to be described as a weakly coupled local QFT 1) parametrically below M_{Planck} :

Species scale $\Lambda_{\rm sp} \sim N^{-\frac{1}{d-2}} M_{\rm Planck}$

- N: number of light weakly coupled particle species enforced by QG
- If $N \gg 1$: $\Lambda_{\rm sp} \ll M_{\rm Planck}$
- Example:

 $\Lambda_{\rm sp} \sim g_{U(1)} M_{\rm Planck}$ for certain weakly coupled U(1) - see later

When is $\Lambda_{
m sp} \ll M_{
m Planck}$ and what does this mean for the physical theory?

[Dvali'07] [Dvali,Redi'07] [**Dvali**,**Gomez**'08] ...

[Harvard group '22-23] [Madrid group '22-23] [MPI groups '22-'24]

Motivation

Two key types of observations:

Principle of charge completeness in QG 2) \implies higher-dimensional physical objects \implies additional consistency conditions

 \Rightarrow Finiteness and positivity

More details later!

Part I:

Emergent String Conjecture

Or at least asymptotically, at parametrically weak coupling?

Conjecture:

[Lee,Lerche,TW'19]

Main question of this talk

Which types of quantum gravity theories are possible?

(Almost) Universal behaviour at infinite distance in moduli space of a quantum gravity theory (in asymptotically Minkowski, $d \ge 4$)

In a theory of quantum gravity in d > 2 dimensions, all **Conjecture:** dimensionless couplings are dynamical.

"Concerning such [dimensionless constants] I would like to state a theorem which at present cannot be based upon anything more than upon a faith in the simplicity of nature: there are no arbitrary constants of this kind"

Albert Einstein, 1949

No coupling constants in QG

Conjecture: In a theory of quantum gravity in d > 2 dimensions, all dimensionless couplings are dynamical.

$$\theta \int_{\mathbb{R}^{1,3}} F(x) \wedge F(x)$$

$$\int_{\mathbb{R}^{1,3}} F(x) = 0$$

parameter

No coupling constants in QG

Example 1: This underlies the idea of solving the strong CP problem via an axion.

$$\int_{\mathbb{R}^{1,3}} a(x) F(x) \wedge F(x)$$

$$\int_{\mathbb{R}^{1,3}} \int_{\mathbb{R}^{1,3}} dynamical$$
field

Conjecture: In a theory of quantum gravity in d > 2 dimensions, all dimensionless couplings are dynamical.

Example 2: In string theory all dimensionless couplings are set by vacuum expectation values of dynamical scalar fields = moduli

$$S = \int \frac{1}{2g^2(\varphi)} F^2 + \dots + G_{ij}(\varphi) d\varphi$$

$$\int \int dynamical means scalar fields means constrained on the scalar field of the$$

In geometric compactifications:

moduli = fluctuations of spacetime metric along extra dimensions

No coupling constants in QG

 $\partial_{\mu}\varphi^{i}\partial^{\mu}\varphi^{j}$

etric on the oduli space

Conjecture: In a theory of quantum gravity in d > 2 dimensions, all dimensionless couplings are dynamical.

Example 2: In string theory all dimensionless couplings are set by vacuum expectation values of dynamical scalar fields = moduli

$$g_i = \langle \varphi_i \rangle$$

In geometric compactifications: moduli = fluctuations of metric along extra dimensions

Space of physical couplings

No coupling constants in QG

Shape and size of extra dimensions

 \times

[Perlmutter,Rastelli,Vafa,Valenzuela'20] [Baume,Calderon-Infante'23] [Ooguri,Wang'24]

[Castellano,Font,HerraezIbanez'21]

Asymptotics of Quantum Gravities

What is the **nature of the asymptotic gravity theory**?

- ➡ Is it a known theory?
- at finite distance?

What is the **nature of the asymptotic tower of light states**, up to duality? What is the **species scale**?

What is the exponential vanishing rate α in $M \sim M_0 e^{-\alpha \frac{\Delta}{M_{\text{Pl}}}}$? needed for practical applications e.g. to cosmological evolution

 \rightarrow Or is it a mess with infinitely many massless states defying a sensible EFT? Can one discover new theories in this way, similar to behaviour at strong coupling

Emergent String Conjecture

Consider a quantum gravity theory in $d \ge 4$ dimensions, asymptotically Minkowski. Every infinite distance limit in the moduli space (if existent) is one of 2 types:

Decompactification limit :

- One or several extra dimensions decompactify.
- Leading tower: KK modes

Higher-dimensional theory

[Lee,Lerche,TW'19]

Emergent String Limit:

- A *unique* <u>critical</u> string becomes asymptotically tensionless w.r.t. Planck scale and weakly coupled.
- •Leading tower: String excitations accompanied by tower KK modes at same scale (unless d = 10)

Weakly coupled string theory in same dimension

Evidence

M-theory on $\mathbb{R}^{1,4} \times X_3$

Physics: Parametrises the gauge couplings

$$S = \int \frac{1}{2g^2(\varphi)} F^2 + \dots + G_{ij}(\varphi) \,\partial_\mu \varphi^i \,\partial^\mu \varphi^j$$

Intuition: X_3 must become very anisotropic

Locally: $X_3 \simeq F \times B$

Globally: X_3 has structure of a fibration, with small fiber F

M-Theory on Calabi-Yau 3-fold

$$\mathcal{V}_F \to 0 \qquad \mathcal{V}_B \to \infty$$

 $\mathcal{V}_{X_3} \sim \mathcal{V}_F \times \mathcal{V}_B \sim \text{const}$

M-Theory on Calabi-Yau 3-fold

Result of systematic geometric classification: [Lee,Lerche,TW'19 (1)(2)(3)]

In every such infinite distance limit in classical Kähler moduli space there is a unique fiber shrinking at the fastest rate, with two possibilities:

M-Theory on Calabi-Yau 3-fold

$$\frac{M_n}{M_{\rm Pl}} \sim n \mathcal{V}_{T^2} \to 0$$

Three potential pitfalls

Caveat 1: Emergent strings are critical strings.

 \checkmark guaranteed by properties of fiber as K3 or T^4 surface in geometry!

Caveat 2: Emergent strings are always unique.

 \checkmark guaranteed by explicit geometric realisation of limits

 \checkmark avoids potential inconsistencies

Caveat 3: Emergent strings are always accompanied by a KK tower.

 \checkmark never find new critical string of purely d<10 dimensional type

 \checkmark often guaranteed only due to quantum corrections to moduli space

- [Baume,Marchesano,Wiesner'20] [Kläwer,Lee,TW,Wiesner'20] [Alvarez-Garcia,Kläwer,TW'21]

Bottom-up arguments

Evidence presented so far is top-down, starting from string or M-theory and via dualities

Recent arguments constrain possible light weakly coupled towers from bottom-up

- USING Species entropy [Basile, Lüst, Montella'23] [Herraez, Lüst, Masias, Scalisi'24]
- using black hole thermodynamics [Bedroya, Mishra, Wiesner'24]

These results indeed suggest:

Possible towers are

- KK-towers, or
- or towers with exponential degeneracy (string-like behaviour)

ESC and positivity in supergravity

Which properties must a supergravity theory obey to comply with the EmergentString Conjecture?[Kaufmann,Lanza,TW in progress]

Preliminary results: **Positivity of topological couplings** key to guarantee uniqueness of emergent strings and absence of pathological limits

Example: 5d N=1 SUGRA $S = \int_{\mathbb{R}^{1,4}} \frac{M_{\text{Pl}}^3}{2} \sqrt{-g} R + \frac{1}{2} \sqrt{-g$

$$-f_{IJ}F^{I} \wedge *F^{J} + \frac{1}{6}C_{IJK}A^{I} \wedge F^{J} \wedge F^{K} + \dots$$

Positivity $C_{IJK} \ge 0$ seems required

Some consequences

Weak Gravity Conjecture

A U(1) gauge theory coupled to quantum gravity must possess <u>some</u>

super-extremal state with

required super-extremal state

Arguments a priori heuristic (every black hole should be able to decay)

In asymptotically weak coupling limits:

[Cota, Mininno, TW, Wiesner'23]

Consistency under circle reduction requires a tower of super-extremal states

[Heidenreich, Reece, Rudelius'15] [Montero, Shiu, Soler'16] [Andriolo, Junghans, Noumi, Shiu'18]

[Arkani-Hamed,Motl,Nicolas,Vafa'05]

Extremal charged black hole sets largest charge-to-mass ratio of all black hole

The Asymptotic Tower Weak Gravity Conjecture ...

... follows from the Emergent String Conjecture!

- Asymptotic weak coupling limits are infinite distance limits in moduli space.
- The only weakly coupled gauge groups are therefore:

Kaluza-Klein tower

Both include a tower of super-extremal states!

$$\frac{g_{\mathrm{U}(1)} q}{m} \ge \frac{g_{\mathrm{U}(1)} Q_{\mathrm{BH,ext.}}}{M_{\mathrm{BH,ext.}}}$$

Perturbative gauge groups from (heterotic) string theory

Perturbative string excitation tower

Detailed analysis:

• F-theory: [Lee,Lerche,TW'18-20]

[Lee,Lerche,Lockhart,TW'20] [Kläwer,Lee,TW,Wiesner'21]

M-theory: [Cota, Mininno, TW, Wiesner'22-23]

taken from [Lee,Lerche,TW'18]

Refined SDC and Emergent Strings

Exponential scaling behaviour:

 $\alpha \geq$ -

Emergent String Conjecture implies:

[Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] [Agmon, Dedroya, Kang, Vafa'22]

for light towers at infinite distance in moduli space

Crucial for applications e.g. to cosmology: How small can decay rate α become?

Explicit realisations: [Blumenhagen,Brinkmann,Makridou'22]

Dark Dimension Scenario

 $m_{\text{tower}} \sim |\Lambda|^{1/4} \sim \mathcal{O}(eV)$

What is the nature of the tower?

$_{\rm g} = \mathcal{O}(eV)$	Excluded experimentally!	see hov [Basile,L
		—

$$M_{\rm KK} = \mathcal{O}(eV)$$

1 mesoscopic extra dimension • $R \sim 10 \mu m$ • $\Lambda_{\text{species}} = 10^9 - 10^{10} \text{GeV} = M_{\text{Pl}}$

Distinguish: [Antoniadis,Arkani-Hamed,Dvali'98] Large extra dimension scenario $M_{\rm Planck; higher} \sim {\rm TeV}$

•
$$R \sim 10 \mu m$$

• $\Lambda_{\text{species}} = 10^9 - 10^{10} \text{GeV} = M_{\text{Planck,5d}}$

Potentially interesting connections to phenomenology, including, among others:

- Prospect to be ruled out/in by upcoming measurements of Newton's law at μm scale
- KK tower giving sterile right-handed neutrinos?
- Dark Matter candidates: KK tower or 5d primordial black hol
- GUTs at 10^{16} GeV would imply charged KK modes at $\mathcal{O}(1 10 \text{TeV})$ [Heckman, Vafa, TW, Xu'24]

	cf. [Dienes et al.'98]
	[ArkaniHamed,Dimopoulos,Dvali,March-Ruse
	[Carena et al.'17]
	[Gonzalo,Montero,Obied,Vafa'22]
les	[Achordoqui,Anoniadis,Lüst'22],

Finiteness and positivity from probe arguments

Part II:

Finiteness and positivity from probe branes

- What is the maximal possible rank of the gauge group in a quantum gravity theory?
- What is the maximal possible light charged matter content or the highest charge of light states?
- Which is the structure of allowed couplings?

Not just of theoretical/academic interest:

Example: Bounds on charges and/or number of U(1) gauge factors would constrain proposals for producing hierarchies such as via clockwork mechanism

Example: Is SU(N) gauge theory, $N \to \infty$, consistent with gravity in the same dimension?

Example: Is a non-chiral U(1) gauge theory with massless matter charged with $q_1 = 1$, q_2 arbitrary ok in gravity?

Are all couplings compatible with symmetries allowed?

> [Choi,Im'15] [Kaplan,Rattazzi'15] [Giduice, McCollough'16] [Saraswat'16]

Finiteness and positivity from probe branes

Probe brane idea:

- QG may contain higher-dimensional objects.
- Consistency of their worldvolume theory \implies strong constraints
- Many theories contain 2-form gauge fields B_2 . e.g. 4d N=1 SUGRA, asymptotically, 5d and 6d SUGRA
- In QG, these objects <u>are assumed</u> to be physical (Completeness Hypothesis). [Polchinski'03] [Banks, Seiberg'10]
- [Callan,Harvey'85] Anomaly inflow from bulk theory produces anomaly on string worldsheet.

Consistency of string (probe brane):

Finiteness from probe branes

Bound on number of U(1) gauge factors in 6d N=(1,0) supergravities

 $r_{\rm U(1)} \le 22$ (with at least 1 tensor)

[Lee,TW'19]

Quantum gravity prediction for algebraic geometry!

to F-theory

Bound on rank of Mordell-Weil group of rational sections of elliptic Calabi-Yau 3-folds

Current record: $r_{\rm max} = 10$ [Grassi, TW'21], [Elkies unpublished]

Positivity from probe branes

Bounds on higher order couplings in 4d N=1 supergravity

$$S = \int_{\mathbb{R}^{1,3}} \frac{M_{\rm Pl}^2}{2} \sqrt{-gR} - \frac{C}{96\pi} \int_{\mathbb{R}^{1}} \frac{M_{\rm Pl}^2}{2} \sqrt{-gR} - \frac{M_{\rm Pl}^2}{96\pi} \int_{\mathbb{R}^{1}} \frac{M_{\rm Pl}^2}{2} \sqrt{-gR} - \frac{M_{\rm Pl}^2}{2} \sqrt{-$$

Bound from consistency of axionic strings: $C \in 3\mathbb{N}$

In particular: $C \ge 0$ and $r_G \le 2C - 2$ in presence of gauge fields!

Positivity built into quantum gravity!

Conclusions

Goal: Find general principles in Quantum Gravity complementary to top-down construction e.g. via string theory

Extra Material

Further Evidence

(Quantum) Kähler moduli spaces F-theory on $\mathbb{R}^{1,5} \times Y_3$: 6d N=1 Lee, Lerche, TW'18 F-theory on $\mathbb{R}^{1,3} \times Y_4$: 4d N=1 Lee, Lerche, TW'19

4d N=1: quantum corrections shield pathological limits with $M_{\rm str} \ll M_{\rm KK}$

Complex structure moduli spaces F-theory on $\mathbb{R}^{1,7} \times K3$: 8d N=1 Lee,TW'21 Lee, Lerche, TW'21 F-theory on $\mathbb{R}^{1,5} \times Y_3$: Alvarez-Garcia, Lee, TW'23 (2x) 6d N=1 + to appear M-theory on $\mathbb{R}^{1,4} \times Y_3$: 5d N=1 Alvarez-Garcia, Kläwer, TW'21

Three potential pitfalls

n

Caveat 3: Emergent strings always accompanied by KK tower

✓ never find new critical string of purely d<10 dimensional type</p>

✓ often guaranteed only due to quantum corrections to moduli space
 [Baume,Marchesano,Wiesner'20]
 [Kläwer,Lee,TW,Wiesner'20] [Alvarez-Garcia,Kläwer,TW'21]

M-Theory on Calabi-Yau 3-fold

 \implies **Decompactification Limit** - but in a dual sense! \checkmark

Counted by GV invariants $N_{g=0}(nT^2) = \chi(X_3) \ \forall n$ Leading tower: M2-brane wrapped *n*-times on torus fiber:

$$M_n^2 = n^2 M_0^2$$
 $M_0 = T_{M2} \mathcal{V}_{T^2}$

Behaviour of KK tower for decompactification

 $5d \rightarrow 6d$ (F-theory limit of M-theory) in the well-known sense of [Vafa'96] [Witten'96]

M-Theory on Calabi-Yau 3-fold

Emergent String Limit in 5d: heterotic / Type II 🗸

M5 brane on $K3/T^4$:

Heterotic / Type II critical string in 5d [Harvey, Strominger'95]

 $T_{\rm em} \sim T_{\rm M5} \mathcal{V}_{K3/T^4} \sim \lambda^{-2} \to 0$

2 leading towers at same scale:

String excitation tower:

Kaluza Klein towers:

• SUGRA states from large base \mathbb{P}^1

M2-branes on curves

 $C \cdot_{\mathrm{K3/T^4}} C \geq 0$

Emergent string setting dual Heterotic / Type II Frame

$$M_n^2 \sim n T_{\rm em}$$

$$M^2_{\mathrm{KK},1} \sim \mathcal{V}^{-1}_{\mathbb{P}^1} \sim \mathcal{V}^{-1}_{\mathbb{P}^1}$$

 $M_{\rm KK.2}^2 \sim \mathcal{V}_C^2 \sim \lambda^{-2}$