"Give Me the Numbers" Approach to Theoretical Physics

MPP Colloquium 5 November 2024

Sebastian Mizera

Princeton University

Theory

Experiment

Predictions

Measurements

Calibration

Calibration

• "Data" obtained from a <u>theoretical</u> construction, collected to enhance <u>theoretical</u> understanding

- "Data" obtained from a <u>theoretical</u> construction, collected to enhance <u>theoretical</u> understanding
- Growing paradigm in many areas of theoretical physics

- "Data" obtained from a <u>theoretical</u> construction, collected to enhance <u>theoretical</u> understanding
- Growing paradigm in many areas of theoretical physics

Tensor networks

- "Data" obtained from a <u>theoretical</u> construction, collected to enhance <u>theoretical</u> understanding
- Growing paradigm in many areas of theoretical physics

• This talk: mathematical physics, formal quantum field theory, string theory

Experiment

Generate theoretical data

Theory

Generate theoretical data

Experiment

Experiment

Generate theoretical data

- Consistency checks
- Connections to other fields
 - Paradigm shift

Historical example

Particle physics

String theory

Gravitational physics

6

$$x_{n+1} = rx_n(1 - x_n)$$

$$x_{n+1} = rx_n(1 - x_n)$$

$$x_{n+1} = rx_n(1 - x_n)$$

Reproduction

$$x_{n+1} = rx_n(1 - x_n)$$

Reproduction Competition

$$x_{n+1} = rx_n(1 - x_n)$$

Low fertility

Low fertility

r = 0.7

Population dies out

n

20

Low fertility

r = 0.7

 $x_1 = 0.5$

 $\mathbf{5}$

 x_n

0.5

0.4

0.3

0.2

0.1

Medium fertility

r = 2.4

Population dies out

10

15

Low fertility

r = 0.7

Medium fertility

$$r = 2.4$$

Population dies out

Population stabilizes

15

n

20

Population dies out

Population stabilizes

Four-year cycle

[Feigenbaum, J. Stat. Phys. 19 (1978)]

Four-year cycle

8
Feigenbaum (1970's): Collecting theoretical data

[Feigenbaum, J. Stat. Phys. 19 (1978)]

Four-year cycle

Eight-year cycle

Feigenbaum (1970's): Collecting theoretical data

[Feigenbaum, J. Stat. Phys. 19 (1978)]

Four-year cycle

Eight-year cycle

Feigenbaum (1970's): Collecting theoretical data

[Feigenbaum, J. Stat. Phys. 19 (1978)]

Four-year cycle

Eight-year cycle

Chaos

9

Transition into chaos

Transition into chaos

Enormous impact on physics and other disciplines

- Non-linear dynamics
- Cloud evolution
- Electronic circuits
- Fractal geometry
- •
- Salamander vision

MAX PLANCK INSTITUTE FOR DYNAMICS AND SELF-ORGANIZATION

[Crevier, Meister, J. Neurophysiol. 79:4 (1998)]

Theory

Experiment

Logistic map

Theory

Logistic map

Experiment

Theory

Experiment

Logistic map

Historical examples

Particle physics

String theory

Gravitational physics

 $= \sum_{\text{Feynman}} \int d^4 \ell_1 \, d^4 \ell_2 \cdots \left(\begin{array}{c} \text{Feynman} \\ \text{integral} \end{array} \right)$ diagrams

$$= \sum_{\substack{\text{Feynman} \\ \text{diagrams}}} \int d^4 \ell_1 d^4 \ell_2 \cdots \begin{pmatrix} \text{Feynman} \\ \text{integral} \end{pmatrix}$$
$$= \sum_{\substack{\text{master} \\ \text{integrals } i=1}}^{\chi} c_i \int d^4 \ell_1 d^4 \ell_2 \cdots \begin{pmatrix} \text{Feynman} \\ \text{integral} \end{pmatrix}_i$$

$$\mathcal{O}(10^{5})$$

$$= \sum_{\substack{\text{Feynman} \\ \text{diagrams}}} \int d^{4}\ell_{1} d^{4}\ell_{2} \cdots \begin{pmatrix} \text{Feynman} \\ \text{integral} \end{pmatrix}$$

$$= \sum_{\substack{\text{Feynman} \\ \text{diagrams}}}^{\chi} \int d^{4}\ell_{1} d^{4}\ell_{2} \cdots \begin{pmatrix} \text{Feynman} \\ \text{integral} \end{pmatrix}$$

$$= \sum_{\substack{\text{master} \\ \text{integrals } i=1}}^{\chi} c_{i} \int d^{4}\ell_{1} d^{4}\ell_{2} \cdots \begin{pmatrix} \text{Feynman} \\ \text{integral} \end{pmatrix}_{i}$$

$$\mathcal{O}(10^{3})$$

- n space:

$$0 = \int d\left(\text{something}\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_3\right) \left(-c$$

$$0 = \int d\left(\text{something}\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_3\right) \left(-c$$

$$\int \left(\begin{array}{c} Feynman \\ integrand \end{array}\right) = \int \left[\left(\begin{array}{c} Feynman \\ integrand \end{array}\right) + d \left(\begin{array}{c} anything \end{array}\right) \right]$$

$$0 = \int d\left(\text{ something }\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_3\right) \left($$

$$\int \left(\begin{array}{c} Feynman \\ integrand \end{array}\right) = \int \left[\left(\begin{array}{c} Feynman \\ integrand \end{array}\right) + d \left(\begin{array}{c} anything \end{array}\right) \right]$$

Equivalence class of Feynman integrands:

$$0 = \int d\left(\text{ something }\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_3\right) \left(-c_3\right) \left(-c_3\right) \left(-c_3\right) + c_3 \left(-c_3\right) \left(-c_$$

$$\int \left(\begin{array}{c} Feynman \\ integrand \end{array}\right) = \int \left[\left(\begin{array}{c} Feynman \\ integrand \end{array}\right) + d \left(\begin{array}{c} anything \end{array}\right) \right]$$

Equivalence class of Feynman integrands:

$$H \equiv \frac{\{\text{space of possible loop integrads}\}}{\{\text{total derivatives}\}}$$

$$0 = \int d\left(\text{ something }\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_3\right) \left($$

$$\int \left(\begin{array}{c} Feynman \\ integrand \end{array}\right) = \int \left[\left(\begin{array}{c} Feynman \\ integrand \end{array}\right) + d \left(\begin{array}{c} anything \end{array}\right) \right]$$

Equivalence class of Feynman integrands:

$$H \equiv \frac{\{\text{space of possible loop integrads}\}}{\{\text{total derivatives}\}}$$

Known to mathematicians as the "**twisted cohomology group**" [Deligne, Aomoto, Gelfand, Kita, Yoshida, Cho, Matsumoto, ... 1960-70's]

$$0 = \int d\left(\text{something}\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) = \left(-c_1\right) - c_2 \left(-c_3\right) \left(-c_3\right) + c_3 \left(-c_3\right) \left(-c_3\right) \left(-c_3\right) + c_3 \left(-c_3\right) \left(-c$$

$$\int \left(\begin{array}{c} Feynman \\ integrand \end{array}\right) = \int \left[\left(\begin{array}{c} Feynman \\ integrand \end{array}\right) + d \left(\begin{array}{c} anything \end{array}\right) \right]$$

Equivalence class of Feynman integrands:

$$H \equiv \frac{\{\text{space of possible loop integrads}\}}{\{\text{total derivatives}\}}$$
Dimensional regularization
Known to mathematicians as the "**twisted cohomology group**"
[Deligne, Aomoto, Gelfand, Kita, Yoshida, Cho, Matsumoto, ... 1960-70's]

$$\sum = \int_0^1 \frac{\mathrm{d}\alpha}{[s\alpha(1-\alpha)]^{3-D/2}}$$

$$\checkmark = \int_0^1 \frac{\mathrm{d}\alpha}{[s\alpha(1-\alpha)]^{3-D/2}}$$

$$\checkmark = \int_0^1 \frac{\mathrm{d}\alpha}{[s\alpha(1-\alpha)]^{3-D/2}}$$

$$\checkmark = \int_0^1 \frac{\mathrm{d}\alpha}{[s\alpha(1-\alpha)]^{3-D/2}}$$

$$\chi = \left| \chi \left((\mathbb{C}^*)^3 - \{ \text{quadric surface} \} \right) \right| = 3$$

Dimension of the vector space is a topological invariant called the signed Euler characteristic $\chi = \dim H$

$$\checkmark = \int_0^1 \frac{\mathrm{d}\alpha}{[s\alpha(1-\alpha)]^{3-D/2}}$$

 $\chi = \left| \chi \left(\mathbb{C} - \{ 2 \text{ points} \} \right) \right| = 1$

2

$$\chi = \left| \chi \left((\mathbb{C}^*)^3 - \{ \text{quadric surface} \} \right) \right| = 3$$

Max Planck Institute for Mathematics in the Sciences

[Fevola, **SM**, Telen; PRL **132** (2024) 10] [Bitoun, Bogner, Klausen, Panzer; Lett. Math. Phys. **109** (2019) 3]

19

$$= c_1 + c_2 + c_3$$

 $= c_1 + c_2 + c_3$

Inner product = "intersection number"

Inner product = "intersection number"

$$c_1 = \left\langle \checkmark \left| \qquad \prod^* \right\rangle \right.$$

Inner product = "intersection number"

Inner product = "intersection number"

[**SM**; PRL **120** (2018) 14] [Mastrolia, **SM**; JHEP **02** (2019) 139] [Frellesvig, Gasparotto, Mandal, Mastrolia, Mattiazzi, **SM**; PRL **123** (2019) 20]

Opens a new avenue in perturbative computations

Connections & applications to

- QCD scattering amplitudes
- Post-Minkowskian expansions
- Generalized unitarity
- String theory
- Finite-field methods
- Hyperplane arrangements
- Matroid theory
- ...

[Aomoto, Argeri, Arkani-Hamed, Baikov, Bai, Barucchi, Bern, Bitoun, Bosma, Britto, Brønnum-Hansen, Broedel, Caron-Huot, Chawdhry, Chetyrkin, Cho, Duhr, Febres Cordero, Frellesvig, Gasparotto, Gardi, Georgoudis, Giroux, Gluza, Goto, Grozin, Harley, Hartanto, Kajda, Kita, Klausen, Kotikov, Lam, Laporta, Larsen, Lee, Lim, Lo Presti, Maierhöfer, Mandal, Marcolli, Mastrolia, Matsumoto, Mattiazzi, Mazloumi, Mirabella, Mitov, **SM**, Moriello, Page, Panzer, Peraro, Pokraka, Pomeransky, Ponzano, Remiddi, Schabinger, Schönemann, Sogaard, Stieberger, Studerus, Tarasov, Tkachov, Usovitsch, Uwer, Weinzierl, Zeng, Zhang]

Theory

Experiment

Counting master integrals

Theory

Experiment

22

Counting master integrals

Theory

Experiment

Counting master integrals $= -\left(- - \right)$

Twisted cohomology

Particle physics

String theory

Gravitational physics

Theoretical and Mathematical Physics

Ralph Blumenhagen Dieter Lüst Stefan Theisen

Basic Concepts of String Theory

MAX-PLANCK-INSTITUT FÜR PHYSIK

🖄 Springer

$$\mathcal{A}^{\text{planar}}(s,t) =$$

$$\mathcal{A}^{\text{planar}}(s,t) = \int$$

Center of mass energy $s = (p_1 + p_2)^2$

$$\mathcal{A}^{\mathrm{planar}}(s,t) =$$

Center of mass energy
 $s = (p_1 + p_2)^2$

Momentum transfer $t = (p_2 + p_3)^2$
"Give me the numbers" approach: Exclusive $2 \rightarrow 2$ scattering

$$\mathcal{A}_{\text{tree}}^{\text{planar}}(s,t) = -t_8 \frac{\Gamma(-\alpha's)\Gamma(-\alpha't)}{\Gamma(1-\alpha's-\alpha't)}$$

Polarization dependence
$$t_8 = s p_1 \cdot \epsilon_2 p_2 \cdot \epsilon_1 \epsilon_3 \cdot \epsilon_4 + \ldots = 1$$

 $\mathcal{A}_{\text{tree}}^{\text{planar}}(s, t) = -t_8 \frac{\Gamma(-\alpha' s)\Gamma(-\alpha' t)}{\Gamma(1 - \alpha' s - \alpha' t)}$

Polarization dependence
$$t_8 = s p_1 \cdot \epsilon_2 p_2 \cdot \epsilon_1 \epsilon_3 \cdot \epsilon_4 + \ldots = 1$$

 $\mathcal{A}_{\text{tree}}^{\text{planar}}(s,t) = -t_8 \frac{\Gamma(-\alpha's)\Gamma(-\alpha't)}{\Gamma(1-\alpha's-\alpha't)}$
Inverse string tension
 $\alpha' = 1$

$$\mathcal{A}_{\text{annulus}}^{\text{planar}}(s,t) \stackrel{?}{=} -it_8 \int_0^{i\infty} \mathrm{d}\tau \int_{0 < z_1 < z_2 < z_3 < 1} \mathrm{d}z_1 \, \mathrm{d}z_2 \, \mathrm{d}z_3 \left(\frac{\theta_1(z_2 - z_1, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-s} \left(\frac{\theta_1(z_3 - z_2, \tau)\theta_1(z_4 - z_1, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3$$

$$\mathcal{A}_{\text{annulus}}^{\text{planar}}(s,t) \stackrel{?}{=} -it_8 \int_0^{i\infty} \mathrm{d}\tau \int_{0 < z_1 < z_2 < z_3 < 1} \mathrm{d}z_1 \, \mathrm{d}z_2 \, \mathrm{d}z_3 \left(\frac{\theta_1(z_2 - z_1, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-s} \left(\frac{\theta_1(z_3 - z_2, \tau)\theta_1(z_4 - z_1, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_3 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left(\frac{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_4 - z_3, \tau)\theta_1(z_4 - z_3, \tau)} \right)^{-t} \left($$

Result of computing the correlator

Positions of punctures

$$\mathcal{A}_{\text{annulus}}^{\text{planar}}(s,t) \stackrel{?}{=} -it_8 \int_0^{i\infty} d\tau \int_{0 < z_1 < z_2 < z_3 < 1} dz_1 dz_2 dz_3 \left(\frac{\theta_1(z_2 - z_1, \tau)\theta_1(z_4 - z_3, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-s} \left(\frac{\theta_1(z_3 - z_2, \tau)\theta_1(z_4 - z_1, \tau)}{\theta_1(z_3 - z_1, \tau)\theta_1(z_4 - z_2, \tau)} \right)^{-t}$$

Result of computing the correlator

Modular parameter Positions of punctures

$$\mathcal{A}_{\text{annulus}}^{\text{planar}}(s,t) \stackrel{?}{=} -it_8 \int_0^{i\infty} d\tau \int dz_1 dz_2 dz_3 \left(\frac{\theta_1(z_2-z_1,\tau)\theta_1(z_4-z_3,\tau)}{\theta_1(z_3-z_1,\tau)\theta_1(z_4-z_2,\tau)} \right)^{-s} \left(\frac{\theta_1(z_3-z_2,\tau)\theta_1(z_4-z_1,\tau)}{\theta_1(z_3-z_1,\tau)\theta_1(z_4-z_2,\tau)} \right)^{-t}$$

Result of computing the correlator

By now, a textbook result [Green, Schwarz 1982]

Polarization dependence

Result of computing the correlator

Modular parameter Positions of punctures

$$\mathcal{A}_{\text{annulus}}^{\text{planar}}(s,t) \stackrel{?}{=} -it_8 \int_0^{i\infty} d\tau \int dz_1 dz_2 dz_3 \left(\frac{\theta_1(z_2-z_1,\tau)\theta_1(z_4-z_3,\tau)}{\theta_1(z_3-z_1,\tau)\theta_1(z_4-z_2,\tau)} \right)^{-s} \left(\frac{\theta_1(z_3-z_2,\tau)\theta_1(z_4-z_1,\tau)}{\theta_1(z_3-z_1,\tau)\theta_1(z_4-z_2,\tau)} \right)^{-t}$$
Polarization dependence Result of computing the correlator

$$\mathcal{A}_{\text{Mobius}}^{\text{planar}}(s,t) \stackrel{?}{=} \frac{32}{N} it_8 \int_{\frac{1}{2}}^{\frac{1}{2}+i\infty} \cdots$$

In physical kinematics, s > -t > 0

In physical kinematics, s > -t > 0

In physical kinematics, s > -t > 0

•••• NIntegrate: Catastrophic loss of precision in the global error estimate due to insufficient WorkingPrecision or divergent integral.

In physical kinematics, s > -t > 0

•••• NIntegrate: Catastrophic loss of precision in the global error estimate due to insufficient WorkingPrecision or divergent integral.

Getting the numbers forces us to rethink the problem

$$\mathcal{A}_{1\text{-loop}}^{\text{planar}} \sim i \int_{0}^{i\infty} \mathrm{d}\tau \text{ (real integrand)} = \infty$$

$$\mathcal{A}_{1\text{-loop}}^{\text{planar}} \sim i \int_{0}^{i\infty} \mathrm{d}\tau \text{ (real integrand)} = \infty$$

real

real

$$\mathcal{A}_{1\text{-loop}}^{\text{planar}} \sim i \int_{0}^{i\infty} \mathrm{d}\tau \text{ (real integrand)} = \infty$$

Not compatible with space-time **unitarity**:

$$S^{\dagger}S = \mathbb{1}$$

29

$$\mathcal{A}_{1\text{-loop}}^{\text{planar}} \sim i \int_{0}^{i\infty} \mathrm{d}\tau \text{ (real integrand)} = \infty$$
real

$$S^{\dagger}S = \mathbb{1}$$

$$\int \frac{\mathrm{d}^4 \ell}{\cdots (\ell^2 - m^2) \cdots} = \infty$$

$$\mathcal{A}_{1\text{-loop}}^{\text{planar}} \sim i \int_{0}^{i\infty} \mathrm{d}\tau \text{ (real integrand)} = \infty$$
real

$$S^{\dagger}S = \mathbb{1}$$

$$\int \frac{\mathrm{d}^4 \ell}{\cdots (\ell^2 - m^2) \cdots} = \infty$$

We need the **causal** $i\varepsilon$ prescription

[Witten; JHEP 04 (2015) 055]

Correct integration contour: Lorentzian time evolution

[Eberhardt, **SM**; SciPost Phys. **14** (2023) 015] [Eberhardt, **SM**; SciPost Phys. **15** (2023) 119] [Eberhardt, **SM**; SciPost Phys. **17** (2024) 078]

Crazy contour deformation

Theory

Experiment

Evaluating string scattering

Theory

Experiment

Evaluating string scattering

Theory

Experiment

Evaluating string scattering ---(--Lorentzian worldsheets

Particle physics

String theory

Gravitational physics

Without interactions:

Without interactions:

Without interactions:

With interactions:

Without interactions:

With interactions:

Can't deform without violating momentum conservation

$$\sum_{i=1}^{4} p_i = 0$$

Compton scattering

Compton scattering

Electron-positron annihilation

Compton scattering

Electron-positron annihilation

Explicit deformation

$$p_{e^-} = (p^+, p^-, p_{e^-}^\perp)$$

 $p_{\gamma} = (-p^+, -p^-, p_{\gamma}^\perp)$

Compton scattering

Electron-positron annihilation

Explicit deformation

 $p_{e^-} = (p^+, p^-, p_{e^-}^{\perp})$ $p_{\gamma} = (-p^+, -p^-, p_{\gamma}^{\perp})$ \downarrow Light-cone coordinates $p^2 = p^+ p^- - (p^{\perp})^2$

Compton scattering

Electron-positron annihilation

Explicit deformation

 $p_{e^-} = (zp^+, \frac{1}{z}p^-, p_{e^-}^{\perp})$ $p_{\gamma} = (-zp^+, -\frac{1}{z}p^-, p_{\gamma}^{\perp})$ \downarrow Light-cone coordinates $p^2 = p^+p^- - (p^{\perp})^2$

Compton scattering

Explicit deformation $p_{e^-} = (zp^+, \frac{1}{z}p^-, p_{e^-}^{\perp})$ $p_{\gamma} = (-zp^+, -\frac{1}{z}p^-, p_{\gamma}^{\perp})$ \downarrow Light-cone coordinates $p^2 = p^+p^- - (p^{\perp})^2$

Electron-positron annihilation

Analytic continuation in the energy

[Bros, Epstein, Glaser; Commun. Math. Phys. 1 (1965)]

How does it generalize?

Open problem since the 80's [Bros; Phys. Rept. 134 (1986) 325]

40

$$i\mathcal{M}_{12\to 345} = \frac{-ig^3}{[(p_1+p_3)^2 - m^2][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$i\mathcal{M}_{12\to 345} = \frac{-ig^3}{[(p_1 + p_3)^2 - m^2][(p_4 + p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$< 0 > 0 \text{ fixed}$$

$$i\mathcal{M}_{12\to345} = \frac{-ig^3}{[(p_1+p_3)^2 - m^2][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$(-ig^3) + \dots$$

$$(p_1+p_3(z))^2 \approx zp_3^+ p_1^-$$

$$(p_1+p_3)^2 - m^2 - i\varepsilon][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$i\mathcal{M}_{12\to345} = \frac{-ig^3}{[(p_1+p_3)^2 - m^2][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$(i\mathcal{M}_{13\to245}^*) \neq \frac{-ig^3}{[(p_1+p_3)^2 - m^2 - i\varepsilon][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$i\mathcal{M}_{12\to345} = \frac{-ig^3}{[(p_1+p_3)^2 - m^2][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

$$(i\mathcal{M}_{13\to245}^*) \neq \frac{-ig^3}{[(p_1+p_3)^2 - m^2 - i\varepsilon][(p_4+p_5)^2 - m^2 + i\varepsilon]} + \dots$$

In-in expectation value

In-in expectation value

time

time time

time

Zoo of "asymptotic observables"

Expectation value

Inclusive cross-section

Out-of-time-order correlator

Connections to thermal physics & the Schwinger—Keldysh formalism: New computational tools

[Caron-Huot, Giroux, Hannesdottir, SM; JHEP 01 (2024) 139]

Zoo of "asymptotic observables"

Connections to thermal physics & the Schwinger—Keldysh formalism: New computational tools

[Caron-Huot, Giroux, Hannesdottir, **SM**; JHEP **01** (2024) 139]

Expectation value of gravitational radiation

Expectation value of gravitational radiation

Expectation value of gravitational radiation

Expectation value of gravitational radiation

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (Albert Einstein Institute)

Expectation value of gravitational radiation

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (Albert Einstein Institute)

Leading order in G_N computed in [Kovacs, Thorne; Astrophys. J. 224 (1978)]

First correct computation of the gravitational waveform at NLO

[Herderschee, Roiban, Teng; JHEP 06 (2023) 004]

[Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini; JHEP 06 (2023) 048]

[Georgoudis, Heissenberg, Vazquez-Holm; JHEP 06 (2023) 126]

First correct computation of the gravitational waveform at NLO

[Herderschee, Roiban, Teng; JHEP 06 (2023) 004]

[Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini; JHEP 06 (2023) 048]

[Georgoudis, Heissenberg, Vazquez-Holm; JHEP 06 (2023) 126]

[Caron-Huot, Giroux, Hannesdottir, SM; JHEP 04 (2024) 060]

First correct computation of the gravitational waveform at NLO

[Herderschee, Roiban, Teng; JHEP **06** (2023) 004] [Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini; JHEP **06** (2023) 048]

[Georgoudis, Heissenberg, Vazquez-Holm; JHEP 06 (2023) 126]

[Caron-Huot, Giroux, Hannesdottir, SM; JHEP 04 (2024) 060]

Experiment

Crossing particles

Experiment

Crossing particles

Experiment

Crossing particles

Experiment

Crossing particles

Thermal physics

TL;DR

Creating artificial demand for "theoretical data" pushes us to develop the theory, which often leads to new results and unexpected cross-disciplinary connections

TL;DR

Creating artificial demand for "theoretical data" pushes us to develop the theory, which often leads to new results and unexpected cross-disciplinary connections

Historical example

Particle physics

String theory

Gravitational physics

TL;DR

Creating artificial demand for "theoretical data" pushes us to develop the theory, which often leads to new results and unexpected cross-disciplinary connections

Historical example

Particle physics

Thank you!

String theory

Gravitational physics

