New Models and Methods for Particle Physics

Lena Funcke

001

MPP Colloquium, 26 November 2024

Cosmology

Astrophysics

Particle Physics

Nuclear Physics

The success of the "Standard Model"

Every predicted particle was eventually discovered:

Content: all particles & forces (except for gravity)

Range:

Precision: up to 0.0000000001 (electron *g*-factor)

predicted

discovered

Open questions of the "Standard Model"

Why do neutrinos have masses?

Every predicted particle was eventually discovered:

5

0.005%

0.0034%

How can we answer these open questions?

Simple equation

Beautiful but incomplete! Need new equations → *new models*

- Complex phenomena

Emergent structures! Need numerical simulations → *new methods*

New models and methods for particle physics

New models and methods for particle physics

How to build new models?

9

New neutrino physics hiding at low energies

New low-energy model¹

Idea

Small neutrino masses from gravitational anomaly \rightarrow Standard Model + gravity

New concept

Neutrino condensate and effective masses \rightarrow at new low-energy gravitational scale

Common high-energy models

Ideas

"Seesaw" mechanisms, large extra dimensions, ...

 \rightarrow Standard Model + new particles, symmetries, ...

Unifying concept

Neutrino masses from Higgs condensate \rightarrow suppressed by new high-energy physics

Analogy: Non-perturbative QCD vacuum

Quantity	QCD with 3 quarks	Gravity with 3 neutrinos
Fermion flavor symmetry	$U(3)_L \times U(3)_R \to U(3)_V$	$U(3)_L \times U(3)_R$ exact if $m_v = 0$
(Pseudo) Goldstone bosons	$1(\eta') + 8(\pi, K, \eta)$	
Axial anomaly	$\partial_{\mu}j_{5}^{\mu} = G\tilde{G} + m_{q}\bar{q}\gamma_{5}q$	
Topological susceptibility	$\left\langle G \tilde{G}, G \tilde{G} \right\rangle_{p \to 0} \neq 0 \to \left\langle \overline{q} q \right\rangle \neq 0$	

Analogy: Non-perturbative QCD vacuum

Quantity	QCD with 3 quarks	Gravity with 3 neutrinos
Fermion flavor symmetry (Pseudo) Goldstone bosons Axial anomaly Topological susceptibility	$U(3)_{L} \times U(3)_{R} \to U(3)_{V}$ $1(\eta') + 8(\pi, K, \eta)$ $\partial_{\mu} j_{5}^{\mu} = G\tilde{G} + m_{q} \bar{q} \gamma_{5} q$ $\langle G\tilde{G}, G\tilde{G} \rangle_{n \to 0} \neq 0 \to \langle \bar{q} q \rangle \neq 0$	$\begin{split} & U(3)_L \times U(3)_R \to U(1)^3 ?^1 \\ & 1(\eta_{\nu}) + 14(\phi_k)^1 \\ & \partial_{\mu} j_5^{\mu} = R\tilde{R} + m_{\nu} \bar{\nu} \gamma_5 \nu \\ & \left\langle R\tilde{R}, R\tilde{R} \right\rangle_{p \to 0} \neq 0 ? \to \left\langle \bar{\nu} \nu \right\rangle \neq 0 ^1 \end{split}$

The model: Neutrino condensation

Pure gravity

Starting point

Non-perturbative topological effects in pure gravity

Assumption

Non-zero topological vacuum susceptibility $\rightarrow \theta$ -term

Consequence ¹

New low-energy gravitational scale Λ_G

Anomaly

Neutrino flavor symmetry breaking via chiral anomaly

Condensation ¹

Neutrino condensation below scale $\Lambda_G: \langle \bar{\nu}\nu \rangle \neq 0$

New particles ¹

Emergence of η_{ν} and 14 massless Goldstones ϕ_k

The model: Neutrino masses

Non-perturbative origin

Effective masses ¹

Generated via non-perturbative coupling to condensate

QCD analogy

Coupling analogous to `t Hooft vertex in QCD²

Effective potential ¹ $V(\hat{X}) = \sum_{n} \frac{1}{n} c_{n} \operatorname{Tr} \left[(\hat{X}^{+} \hat{X})^{n} \right]$ with $\hat{X}_{\alpha_{L}}^{\alpha_{R}} \equiv \langle \bar{\nu}_{\alpha_{L}} \nu_{\alpha_{R}} \rangle$ Mass hierarchy ¹ $\hat{X} = \operatorname{diag}(m_{1}, m_{2}, m_{3})$ determined by minimum $\frac{\partial V}{\partial m_{i}} = 0$ Dirac vs. Marjoana ¹

Properties

Model works for both natures: $\langle \bar{\nu}_L \nu_R \rangle$ or $\langle \nu_L^T C \nu_L \rangle$

The model: Theory summary

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Problem

Neutrino masses: predicted = 0 but measured > 0

Our model ¹

Neutrinos can become massive in the late universe

Key prediction

Neutrino condensation → flavor symmetry breaking

How to constrain this model?

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Problem

Neutrino masses: predicted = 0 but measured > 0

Our model ¹

- Neutrinos can become massive in the late universe **Key prediction**
- Neutrino condensation \rightarrow flavor symmetry breaking

Condensate $|\langle \bar{\nu}\nu \rangle| \sim \text{scale } \Lambda_G^3 \sim \text{temperature } T_{\text{SSB}}^3$

Constraints

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Neutrino masses: predicted = 0 but measured > 0

Our model¹

- Neutrinos can become massive in the late universe **Key prediction**
- Neutrino condensation \rightarrow flavor symmetry breaking

Implications for dark energy

Numerical coincidence¹

Condensate $\langle \bar{\nu}\nu \rangle$ on dark energy scale, $\rho_{\rm DE} \sim ({\rm meV})^4$ \rightarrow connected to fundamental new energy scale Λ_G

Cosmological constant?²

Excluded by S-matrix formulation of quantum gravity

Dynamical dark energy? ³

Predicted time dependence, e.o.s. parameter $w \neq -1$

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Problem

Neutrino masses: predicted = 0 but measured > 0

Our model ¹

- Neutrinos can become massive in the late universe **Key prediction**
- Neutrino condensation \rightarrow flavor symmetry breaking

Topological defects emerge from phase transition ²

Predictions for cosmic neutrinos

Cosmic neutrinos disappear after phase transition 1,3 \rightarrow no mass detection at only at

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Problem

Neutrino masses: predicted = 0 but measured > 0

Our model ¹

- Neutrinos can become massive in the late universe **Key prediction**
- Neutrino condensation \rightarrow flavor symmetry breaking

Predictions for astrophysical neutrinos

Heavier neutrinos decay into lightest: ¹ $\nu_i \rightarrow \phi_k + \nu_j$ or $\bar{\nu}_j$ Discover: neutrino = or \neq antineutrino? ²

Neutrino mass model

Standard Model

Masses of particles are generated in the early universe

Problem

Neutrino masses: predicted = 0 but measured > 0

Our model ¹

- Neutrinos can become massive in the late universe **Key prediction**
- Neutrino condensation \rightarrow flavor symmetry breaking

Predictions for axion-search experiments

Standard Model

Weak force distinguishes matter from antimatter

Problem

Strong force doesn't! Need new particle: axion?

Our model ¹

New axion-like particles η_{ν} and $\phi_k \rightarrow$ testable at ...

... ALPS II experiment²

... MADMAX experiment?³

New models and methods for particle physics

Why do we need numerical methods?

 $C = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ + $i \not F \not D \not + h.c$ + $\not Y. y_{ij} \not Y_{j} \not + h.c$ + $|D_{\mu} \varphi|^2 - V(\phi)$ $dF d\psi d\phi$ over forces (F), matter (ψ), Higgs field (ϕ) Integrate Too complex: Way out: approximation! no exact computation!

Which methods do we currently use?

Computational costs of MCMC

E.g. "Lattice QCD": machine learning¹ dominant supercomputer usage (INCITE 2019) Materials, chemistry Plasma physics Lattice QCD: ~ 40%

Computational challenges of MCMC

Cannot directly compute free energy, entropy, ...

 \rightarrow machine learning ¹

Baryon Density

¹ White Paper: Boyda, Cali, Foreman, LF, et al. (2022); Nicoli, Anders, LF, et al., PRL (2021); ...
 ² LF, et al., PRD (2023); LF et al., PRD (2020); Nakayama, LF, et al., PRD (2022); ...
 ³ LF, et al., Quantum (2021); LF, et al., PRA (2022); Di Meglio, et int., LF, et al. (QC4HEP Working Group), PRX Quantum (2023); ...

Computational costs of MCMC

¹ White Paper: Boyda, Cali, Foreman, LF, et al. (2022); Nicoli, Anders, LF, et al., PRL (2021); ...
 ² LF, et al., PRD (2023); LF et al., PRD (2020); Nakayama, LF, et al., PRD (2022); ...
 ³ LF, et al., Quantum (2021); LF, et al., PRA (2022); Di Meglio, et int., LF, et al. (QC4HEP Working Group), PRX Quantum (2023); ...

Computational challenges of MCMC

Cannot directly compute free energy, entropy, ... Cannot simulate large θ term, chemical potential, ...

- \rightarrow machine learning ¹
- \rightarrow tensor networks ²

Computational costs of MCMC

¹ White Paper: Boyda, Cali, Foreman, **LF**, et al. (2022); Nicoli, Anders, **LF**, et al., *PRL* (2021); ... ² **LF**, et al., *PRD* (2023); **LF** et al., *PRD* (2020); Nakayama, **LF**, et al., *PRD* (2022); ... ³ **LF**, et al., *Quantum* (2021); **LF**, et al., *PRA* (2022); Di Meglio, et int., **LF**, et al. (QC4HEP Working Group), *PRX Quantum* (2023); ...

Computational challenges of MCMC

Cannot directly compute free energy, entropy, ... Cannot simulate large θ term, chemical potential, ...

Cannot simulate out-ofequilibrium dynamics, ... \rightarrow machine learning ¹

- \rightarrow tensor networks ²
- \rightarrow quantum computing ³

Computational costs of MCMC

¹ White Paper: Boyda, Cali, Foreman, LF, et al. (2022); Nicoli, Anders, LF, et al., PRL (2021); ...
 ² LF, et al., PRD (2023); LF et al., PRD (2020); Nakayama, LF, et al., PRD (2022); ...
 ³ LF, et al., Quantum (2021); LF, et al., PRA (2022); Di Meglio, et int., LF, et al. (QC4HEP Working Group), PRX Quantum (2023); ...

Computational challenges of MCMC

Cannot directly compute free energy, entropy, ... Cannot simulate large θ -

term, chemical potential, ...

Cannot simulate out-ofequilibrium dynamics, ... → machine learning¹

- \rightarrow tensor networks ²
- \rightarrow quantum computing ³

New models and methods for particle physics

How to tackle MCMC challenges with new methods?

Standard method: MCMC for Lattice QCD

Concept

Compute observables: $\langle 0 \rangle = \frac{1}{Z} \int D\phi e^{-S(\phi)} O(\phi)$ Sample: $\langle 0 \rangle \approx \frac{1}{N} \sum O(\phi_i)$, where $\phi_i \sim p(\phi) = \frac{1}{Z} e^{-S(\phi)}$ **Problem**

Sequential, correlated sampling of $\phi_i \rightarrow$ slow and costly No *direct* computation of free energy \rightarrow large errors

New method: machine learning

Concept

Train deep neural network:

Results

Parallel, uncorrelated sampling of $x_i \rightarrow \text{get } \phi_i = g_{\theta}(x_i)$

Direct computation of free energy in 1+1D Higgs model¹

Future

Observables in 2+1D² & 3+1D³

¹ Nicoli, Anders, **LF**, et al., *PRL* (2021), *PoS Lattice* (2022), *PoS Lattice* (2024); ² Ongoing work with Nicoli, Schuh, et al.; development of software package NeuLat; ³ White Paper: Boyda, Cali, Foreman, **LF**, et al. (2022)

How to tackle MCMC challenges with new methods?

Standard method: MCMC for Lattice QCD

Concept

Compute observables: $\langle 0 \rangle = \frac{1}{Z} \int D\phi e^{-S(\phi)} O(\phi)$ Sample: $\langle 0 \rangle \approx \frac{1}{N} \sum O(\phi_i)$, where $\phi_i \sim p(\phi) = \frac{1}{Z} e^{-S(\phi)}$ **Problem**

Complex action for θ -term and chemical potential μ \rightarrow "sign problem" \rightarrow no simulations for large θ or μ

New method: tensor networks

Concept

Compute observables: $\langle 0 \rangle = \langle \psi | 0 | \psi \rangle$, approximate $| \psi \rangle$ E.g.: $| \psi \rangle = \sum c_{i_1 \cdots i_n} | i_1 \rangle \cdots | i_n \rangle \approx \sum A_{i_1}^1 \cdots A_{i_n}^n | i_1 \rangle \cdots | i_n \rangle$ Results

Simulations of phase transitions for large θ or μ in 1+1D¹

Future

Phase transitions in 2+1D and $3+1D^2$

¹ **LF**, et al., *PRD* (2020); Nakayama, **LF**, et al., *PRD* (2022); **LF**, et al., *PRD* (2023); ² Kühn, Gerken, **LF**, et al., *PRB* (2023); Crippa, Romiti, **LF**, et al. (2024); Crane, et int., **LF**, et al. (2024); ongoing work with Diamantini, et al.

What are the prospects and challenges of new methods?

New method: machine learning

Prospects

- Direct computation of free energy, entropy, ... ¹
- Mitigate sign problem ²

Challenges

- K Mode collapse ³
 - Focus on 1+1D, first ansatzes in 2+1D & 3+1D
 - \rightarrow roadmap to QCD 4

New method: tensor networks

Prospects

Evade sign problem ⁵

Challenges

- Approximation inefficient for highly entangled states
 - Focus on 1+1D, first ansatzes in 2+1D & 3+1D⁶

 \rightarrow competition with quantum computing ⁷

¹ Nicoli, Anders, LF, et al., *PRL* (2021), *PoS Lattice* (2024); ² Ongoing work with Nicoli, Schuh, et al., ³ Nicoli, Anders, LF, et al., *PoS Lattice* (2022); ⁴ Boyda, Calì, Foreman, LF, et al. (2022); ⁵ LF, et al., *PRD* (2020); Nakayama, LF, et al., *PRD* (2022); LF, et al., *PRD* (2023); ⁶ Crippa, Romiti, LF, et al. (2024); Avkhadiev, LF, et al. (2024); ⁷ review: LF, et al., *PoS Lattice* (2023); ³ 1

New models and methods for particle physics

How to tackle MCMC challenges with new methods?

Standard method: MCMC for Lattice QCD

Concept

Compute observables: $\langle 0 \rangle = \frac{1}{Z} \int D\phi e^{-S(\phi)} O(\phi)$ Sample: $\langle 0 \rangle \approx \frac{1}{N} \sum O(\phi_i)$, where $\phi_i \sim p(\phi) = \frac{1}{Z} e^{-S(\phi)}$ **Problem**

Euclidean action $S(\tau = it) \rightarrow$ no real-time evolution \rightarrow can be exponentially hard for tensor networks

New method: quantum algorithms

Concept

Compute $|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$, encode 2^n basis states **First step**

Focus on ground-state preparation: $\min_{\alpha} E_{\alpha} = \langle \psi_{\alpha} | \mathcal{H} | \psi_{\alpha} \rangle$

Hybrid quantum-classical algorithms

Classical optimization of quantum gate parameters α

 \rightarrow use machine learning ¹

Quantum Computing for High-Energy Physics State of the Art and Challenges Summary of the QC4HEP Working Group

Alberto Di Meglio,^{1,*} Karl Jansen,^{2,3,†} Ivano Tavernelli,^{4,‡} Constantia Alexandrou,^{5,3} Srinivasan Arunachalam,⁶ Christian W. Bauer,⁷ Kerstin Borras,^{8,9} Stefano Carrazza,^{10,1} Arianna Crippa,^{2,11} Vincent Croft,¹² Roland de Putter,⁶ Andrea Delgado,¹³ Vedran Dunjko,¹² Daniel J. Egger,⁴ Elias Fernández-Combarro,¹⁴ Elina Fuchs,^{1,15,16} Lena Funcke,¹⁷ Daniel González-Cuadra,^{18,19} Michele Grossi,¹ Jad C. Halimeh,^{20,21} Zoë Holmes,²² Stefan Kühn,² Denis Lacroix,²³ Randy Lewis,²⁴ Donatella Lucchesi,^{25,26,1} Miriam Lucio Martinez,^{27,28} Federico Meloni,⁸ Antonio Mezzacapo,⁶ Simone Montangero,^{25,26} Lento Nagano,²⁹ Voica Radescu,³⁰ Enrique Rico Ortega,^{31,32,33,34} Alessandro Roggero,^{35,36} Julian Schuhmacher,⁴ Joao Seixas,^{37,38,39} Pietro Silvi,^{25,26} Panagiotis Spentzouris,⁴⁰ Francesco Tacchino,⁴ Kristan Temme,⁶ Koji Terashi,²⁹ Jordi Tura,^{12,41} Cenk Tüysüz,^{2,11} Sofia Vallecorsa,¹ Uwe-Jens Wiese,⁴² Shinjae Yoo,⁴³ and Jinglei Zhang^{44,45}

Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage—namely, a signifcations on quantum computers. In particular, the high-energy physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problems. This concerns, on the theoretical side, the exploration of models that are very hard or even impossible to address with classical techniques and, on the experimental side, the enormous data challenge the near future. Having in mind hardware with about 100 gubits capable of executing several thousand two-qubit gates, where possible, we also provide resource estimates for the examples given using error-

How can we quantum simulate^{*} lattice field theories?

Overview

Current technology

 $\mathcal{O}(100-1000)$ noisy qubits with error mitigation

State of the art

First quantum simulations of 1+1D gauge theories ¹

Next steps

Efficient lattice fermion implementations²

Hybrid MCMC-quantum simulations of gauge theories ³

* Note: quantum simulate or tensor-network-approximate

¹ Reviews: LF, et al., *PoS Lattice* (2023); Di Meglio, et int., LF, et al. (QC4HEP Working Group), *PRX Quantum* (2023); ² Angelides, LF, et al., *PRD* (2023); ³ Crippa, Romiti, LF, et al. (2024); Avkhadiev, LF, et al. (2024); ⁴ Crane, et int., LF, et al. (2024); ⁵ ongoing work with Halimeh et al.; ⁶ Peng, Diamantini, LF, et al., (2024); ⁷ Schuster, Kühn, LF, et al., *PRD* (2024); … 35

Sign-problem-afflicted regimes

Topological terms

1+1D gauge theories with θ -term ⁴ and dynamical axion ⁵

2+1D gauge theories with Chern-Simons term ⁶

Chemical potentials

1+1D gauge theories with chemical potentials v_f ⁷

Outlook: how can we address the sign problem in 3+1D?

Example: U(1) lattice gauge theory with θ -term

Goal

Study phase transition at $\theta = \pi$ and large $g = \beta^{-1/2}$

Theoretical requirements

- Derive 3+1D θ -term in Hamiltonian lattice formulation ¹
- Develop quantum algorithms for 1+1D,² 2+1D,³ and 3+1D
- **First classical computations**
- Study phase transition with exact diagonalization¹

Future work

 ¹ Kan, LF, et al., *PRD* (2021);
 ² LF, et al., *PoS Lattice* (2023); Angelides, LF, et al., *PRD* (2023); Schuster, Kühn, LF, et al., *PRD* (2023); Avkhadiev, LF, et al. (2024);
 ³ Crippa, Romiti, LF, et al. (2024); Crane, et int., LF, et al. (2024); ...

First classical results for a single cube

Outlook: the future of quantum computing

The path to go...

State of the art *

First quantum simulations of 1+1D lattice theories¹ Noise mitigation, ² circuit optimization, ³ new algorithms ⁴ Future goals*

Quantum simulations for 2+1D & 3+1D theories

To evade sign problem, ... of Lattice QCD and beyond

A rough sketch...

¹ Reviews: LF, et al., *PoS Lattice* (2023); Di Meglio, et int., LF, et al. (QC4HEP Working Group), *PRX Quantum* (2023); ²LF, et al., PRA (2022), ..., ³LF, et al., Quantum (2021), LF, et al., IEEE ICWS (2021), ..., ⁴ Angelides, LF, et al., PRD (2023); Crippa, Romiti, LF, et al. (2024); ...

Summary: new models and methods for particle physics

New models	New methods		
State of the art	State of the art		
Low-energy avenue of model building: ¹ m_{ν} , $\rho_{\rm DE}$, ϕ_k ,	Testing (B)SM physics with MCMC, ² new methods ³		
Future goals	Future goals		
Further developing and testing new low-energy models	Application of new methods to (B)SM phenomena		

¹ Dvali, LF, *PRD* (2016a); (2016b); Lorenz, LF, et al., *PRD* (2019); LF, Raffelt, Vitagliano, *PRD* (2020); Dvali, LF, Vachaspati, *PRL* (2023); Dvali, Freche, LF, *manuscript in prep.*; ² Lorenz, LF, et al., *PRD* (2021); Alexandrou, Finkenrath, LF, et al., *PRL* (2020); ³ LF, et al., *Quantum* (2021), LF, et al., *PRA* (2022), LF, et al., *PRD* (2023); Avkhadiev, LF, et al. (2024); ...38

Thanks to my collaborators

Gia Dvali (MPP, LMU)

Georg Raffelt (MPP)

Karl Jansen (DESY)

Phiala Shanahan (MIT)

Jesse Thaler (MIT)

(Perimeter Inst.)

Tanmay Vachaspati (Arizona State U.)

Philipp Stratmann (Intel Munich)

Ivano Tavernelli (IBM Zurich)

Stefan Kühn (DESY)

Carsten Urbach (Bonn U.)

Sofia Vallecorsa (CERN)

(Cardiff U.)

Steven Girvin (Yale U.)

and many more...

Special thanks

... to my research group:

... for support and funding:

CRC/SFB 1639

MATTER

TRANSDISCIPLINARY RESEARCH AREA

UNIVERSITÄT BONN

LAMARR INSTITUTE FOR MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

IBM Q[®] rigetti intel.

... for computing time:

HPC/A-LAB

40

Thanks to you for listening! Any questions on ... ?

Image credits

S	lid	e	1	ł
-	1.0	~	-	٠

DKosig, https://www.istockphoto.com/de/foto/bin%C3%A4rdatenstrom-gm1146014260-308655834 US Department of Energy, https://phys.org/news/2017-10-supercomputers-delve-blocks.html (also s. 25, 26, 27, 28, 30, 31, 34) Slide 2: Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI), https://hubblesite.org/contents/articles/hubble-deep-fields (also s. 4, 6, 24) CERN, Lucas Taylor, https://cms.cern/physics/higgs-boson (also s. 4) ESO, https://www.eso.org/public/outreach/eduoff/vt-2004/Background/Infol1/BIS-C2.html (also s. 6) Rost-9D, https://www.istockphoto.com/de/foto/3d-illustration-atomic-struktur-atom-ist-die-kleinste-materie-die-chemischeelemente-gm1197582846-341969899 (also s. 3) Slide 3: Daniel Dominguez/CERN, https://home.cern/science/physics/standard-model (also s. 7, 8) Felix Mittermeier, https://pixabav.com/de/photos/sternenklarer-himmel-nachthimmel-2675322/ Thundercrest, https://bronsheimmusic.com/thundercrest-fanfare-band NASA, https://explorer1.jpl.nasa.gov/galleries/earth-from-space/#gallery-10 Kailogical, https://commons.wikimedia.org/wiki/File:Alpha-beta-gamma decay.png Slide 5: The Economist, https://www.economist.com/graphic-detail/2012/07/04/worth-the-wait Science, https://www.science.org/content/article/sciences-breakthrough-2012 Oleg Ruchayskiy, https://www.epfl.ch/schools/sb/research/iphys/wp-content/uploads/2018/10/cosmology_lecture_BSM2014.pdf Henning Bahl, https://www.desy.de/~bahl/assets/talks/2022 06 02 CERN BSM forum.pdf Slide 6: DESY, https://www.desy.de/news/news/archive before 2010/2004/partphys 0710/index eng.html (also s. 24) Redbubble, https://www.redbubble.com/shop/standard+model (also s. 23, 39) Slide 7: Euclid, https://euclid2023.org/ (also s. 8, 18, 21, 22, 29, 33, 39, 42) KATRIN, https://github.com/KATRIN-Experiment (also s. 8, 18, 21, 22, 29, 33, 39, 42) IceCube Neutrino Observatory, https://github.com/icecube (also s. 8, 19, 21, 22, 29, 33, 39, 42) IBM, http://ibm.com (also s. 8, 21, 22, 29, 33, 39, 42) Banuls et al., JHEP 11 (2013) 158, https://link.springer.com/article/10.1007/JHEP11(2013)158 (also s. 8, 21, 22, 29, 33, 39, 42) Enisaksoy, https://www.istockphoto.com/de/vektor/verhandlungsf%C3%BChrung-gm465033431-33117412 (also s. 8, 42) Slide 9: Astronomy Magazine, https://eduvigyan.com/a-complete-history-of-the-universe/ (also s. 27, 34, 39) Slide 10: Hitoshi Murayama, http://hitoshi.berkeley.edu/ IKEA (also s. 11, 12, 13, 14)

Slide 16:

NASA / WMAP Science Team, http://map.gsfc.nasa.gov/ Patterson, Ann. Rev. of Nucl. and Part. Sci. 65, 177 (2015), https://www.annualreviews.org/content/journals/10.1146/annurevnucl-102014-021916 Slide 18: Roy Kaltschmidt, Lawrence Berkeley National Laboratory, https://www.nature.com/articles/nature.2012.10202 KIT, https://www.sfb1258.de/news-items/official-inauguration-katrin-starts-measurements Slide 19: IceCube Collaboration, https://icecube.wisc.edu/gallery/published-in-prl-evidence-for-astrophysical-muon-neutrinos-from-thenorthern-sky/ NASA/CXC/U.Texas, https://www.nasa.gov/image-article/exploded-star-blooms-like-cosmic-flower/ Slide 20: DESY, Marta Mayer, https://www.desy.de/news/news search/index eng.html?openDirectAnchor=2758 A. Hambarzumjan/MPP, https://www.mpp.mpg.de/forschung/madmax Slide 24: JICFuS, Tsukuba, https://www.jicfus.jp/en/promotion/pr/mj/brian_colguhoun/ (also s. 36) Slide 25: Jack Wells, Kate Clark, https://indico.mitp.uni-mainz.de/event/231/contributions/3417/attachments/2631/2885/MLT-Clark.pdf (also s. 26, 27, 28) J Ordan/CERN-PHOTO-201903-053-1, https://cerncourier.com/a/alice-probes-extreme-electromagnetic-fields/ (also s. 30, 39) Slide 26: Dana Berry, Swift/NASA, https://www.sciencenews.org/article/neutron-star-collision-fast-radio-burst (also s. 31, 39) Slide 30: Nicoli et al., Phys. Rev. Lett. 126, 032001 (2021), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.032001 (also s. 32) Slide 31: Nakayama et al., Phys. Rev. D 105, 054507 (2022), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.054507 (also s. 32) Slide 34: Astibuag, https://stock.adobe.com/de/images/gubit-vs-bit-states-of-classical-bit-compare-to-guantum-bit-superposition-vectoreps10/239139717 Tavora, https://towardsdatascience.com/neural-guantum-states-4793fdf67b13 Slide 35: Di Meglio et al., PRX Quantum 5, 037001 (2024), https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.037001 Slide 36: Schuster et al., Phys. Rev. D 109, 114508 (2024), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.114508 Slide 37: Kan et al., Phys. Rev. D 104, 034504 (2021), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.034504 Slide 38: Susrut, https://vectordad.com/printables/caution-hazardous-materials-sign/