Alberto Nicolis Columbia University

Phases of matter and spontaneous spacetime symmetry breaking

(based on many papers, with many collaborators, over the last \sim 15 years)

1

Usually

condensed matter theory = relativity

1. $v \ll c$ (= 1) 2. preferred frame

Note: relativity = Lorentz or Galilei

condensed matter theory = relativity spontaneously

Note: relativity = Lorentz or Galilei

Or equivalently

condensed matter theory = relativity non-linearly realized

Note: relativity = Lorentz or Galilei

Symmetry = Transformation of dynamical variables under which dynamics are invariant

Continuous symmetry *}*

Noether theorem

Goldstone theorem

Noether theorem

Symmetries \overrightarrow{a} Conservation laws

Time translations: Energy Spatial translations: Momentum Rotations: Angular momentum etc.

Goldstone theorem

IF symmetry broken by state of the system

Gapless excitations

Gapless = *}* Zero energy (QM) Zero frequency (classical)

Dynamics of "Goldstones" constrained by symmetries

Effective field theory (EFT)

 $\lambda \gg \ell_{UV} \qquad \omega \ll \omega_{UV}$

Low-energy degrees of freedom + symmetries:

 $\Phi \rightarrow G[\Phi]$

Lagrangian:

 $\mathcal{L} = f(\Phi, \partial)$

Derivative expansion:

$$
(\ell_{UV}\cdot \vec{\nabla})^n
$$

 $\int (1/\omega_{UV} \cdot \partial_t)^n$

Low-energy degrees of freedom + symmetries:

 $\Phi \to G[\Phi]$

 $\mathcal{L} = f(\Phi, \partial)$

Lagrangian:

Derivative expansion:

 $(\ell_{UV} \cdot \nabla)$ $\bar{\nabla}$

 \int_0^n , $(1/\omega_{UV} \cdot \partial_t)^n$

systematic

Example 1: Hydrodynamics

 $\omega \ll 1/\tau$ $\lambda \gg \ell$

EFT for fluids

 11

Dof: volume elements' positions $\boxed{\phi^I(\vec{x},t)} \quad I=1,2,3$

EFT for fluids

Dof: volume elements' positions $\begin{array}{ccc} \sqrt{I(\vec{x},t)} & I=1,2,3 \end{array}$

 $\overline{\langle \phi^I \rangle_{\rm eq}} = \overline{x^I} \, ,$

Symmetries: Poincaré + internal

$$
\begin{aligned}\n\phi^I &\rightarrow \phi^I + a^I \\
\phi^I &\rightarrow SO(3) \phi^I\n\end{aligned}
$$

recover homogeneity/isotropy

 $\langle \phi^I\rangle_{\rm eq}=x^I$ preserves diagonal combinations

$$
\phi^I \to \xi^I(\phi) \qquad \det \frac{\partial \xi^I}{\partial \phi^J} = 1 \qquad \text{fluid vs solid}
$$

(Soper 1976) (Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Action:
$$
S = \int d^4x F(b) \qquad b = \sqrt{\det \partial_\mu \phi^I \partial^\mu \phi^J}
$$

Correct hydrodynamics ($T_{\mu\nu}$ + eom) with:

$$
\rho = -F
$$

\n
$$
p = F - F' b
$$

\n
$$
u^{\mu} = \frac{1}{6b} \epsilon \epsilon \partial \phi \partial \phi \partial \phi
$$

Relativistic, non-linear

ground state (at given p):
$$
\phi^I
$$

$$
\phi^I=x^I
$$

 $\overline{\mathsf{Nambu-Goldstone} \text{ modes}}$:

$$
\phi^I = x^I + \pi^I
$$

$$
\mathcal{L} \rightarrow \left(\dot{\pi}^I\right)^2 - c_s^2 \left(\partial_I \pi^I\right)^2 + \text{interactions}
$$

longitudinal = sound transverse = vortices

$$
\begin{aligned}\n\omega &= c_s k \\
\omega &= 0\n\end{aligned}
$$

Application: Vortex-sound interactions

Subsonic regime (v << cs) Fluid nearly incompressible

sound waves difficult to excite

treat vortices non-linearly

treat sound perturbatively

integrate it out

(Endlich, Nicolis 2013)

Vortex-sound decomposition

 $\phi^I(\vec{x},t) = \phi^I_0(\vec{x},t) + \delta\phi^I$ *}* (\vec{x}, t)

compression

Expand the action in powers of $\delta\phi$ and v_0/c_s

The sound of turbulence

$$
P=\frac{\rho+p}{c_s^5}\langle \ddot{Q}\ddot{Q}\rangle
$$

$$
Q_{ij} \equiv \int d^3x \left(v_i v_j - \frac{c_s^2}{c^2} v^2 \delta_{ij} \right)
$$

(Lighthill 1954 + relativistic correction)

(similar to Goldberger, Rothstein 2004)

Probing turbulence with sound waves

$$
\frac{d\sigma}{d\Omega} = \frac{\omega^4}{c_s^6} \left[1 - \frac{c_s^2}{c^2} + \frac{c_s^4}{c^4}\right] \left|\tilde{v}(\Delta \vec{k})\right|^2
$$

(Lund, Rojas 1989 + relativistic correction)

Sound mediated vortex-vortex potential

Leading order

Next to leading order

Long range potential:

$$
V \sim \frac{(\rho + p)}{c_s^2} \cdot \frac{q_1 q_2}{r^3} \sim E_{\text{kin}} (v/c_s)^2 (\ell/r)^3
$$

$$
q \equiv \int d^3x \ v^2
$$

Useful? Detectable? Known?

 $\sf{u}\, \sf{v}\, \sf{c}\, \sf{x}$

Long range potential:

$$
V \sim \frac{(\rho + p)}{c_s^2} \cdot \frac{q_1 q_2}{r^3} \sim E_{\text{kin}} (v/c_s)^2 (\ell/r)^3
$$

$$
q \equiv \int d^3x \ v^2
$$

 $\sf{u}\, \sf{v}\, \sf{c}\, \sf{x}$

ಀ

Useful? Detectable? Known? (William Irvine, U. of Chicago) ? ? No

Spontaneously broken Q \Longrightarrow light Goldstone $\phi(x)$ Finite density for Q \iff $\phi(x) = \mu t + \pi(x)$ Symmetries: Poincaré + shift $\phi(x) \rightarrow \phi(x) + a$ Bulk action: *S* = Example 2: String theory for superfluids Superfluid: same classical eom as fluids, but: **Production**
Principhonon Z $d^4x P(X) + ...$ $X \equiv (\partial_\mu \phi)^2$ **eq.** of state (Son 2005)

zero T super-fluid vs. ordinary fluid compressional (sound) sector

Hydrodynamics Hydrodynamics

transverse (vortex) sector

 $\bar{\bar{\nabla}}$ $\vec{v} \neq 0$

V X

Hard (gapped) Soft (gapless)

V X $\bar{\bm{\nabla}}$ $\vec{v} = 0$

Vortex dynamics (incompressible limit)

$$
\vec{\nabla} \cdot \vec{v} = 0 \qquad \qquad \vec{\omega} = \vec{\nabla} \times \vec{v}
$$

For vortex lines

$$
\Gamma = \oint \vec{v} \cdot d\vec{\ell} \quad \leftrightarrow \quad I
$$

$$
\vec{v} \quad \leftrightarrow \quad \vec{B}
$$

Biot-Savart:

$$
\vec{v}(\vec{x}) = -\frac{\Gamma}{4\pi} \int \frac{(\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3} \times d\vec{x}'
$$

1st order EOM!

$Unlike$ $m\vec{a} = F$ $\bar{\bar{F}}$ ext

\implies No room for "forces"

Instantaneous v determined by geometry

No free initial condition for v

For vortex rings

$$
\vec{v} = \frac{\Gamma}{4\pi R} \log(R/a) \,\hat{n}
$$

Far away:

$$
\vec{v}(\vec{x}) = \vec{B}_{\text{dipole}} \qquad \text{with} \quad \vec{\mu} = (\pi R^2) \Gamma \,\hat{n}
$$

Excitations: Kelvin waves

Two modes overall $(\neq 2+2)$

$$
\omega_{\pm} = \frac{\Gamma}{2\pi} k^2 \log(1/ka)
$$

fewer modes than 2-derivative eom

``non-local'' dispersion relation

William Irvine

William Irvine

William Irvine

William Irvine

William Irvine

other groups...

other groups...

Coupling with bulk modes

Problem:

$\left(\begin{array}{c}\n\bigcirc \\
\bigcirc \\
\bigcirc\n\end{array}\right)$ $\phi \rightarrow \phi + 2\pi$ ("defect")

Solution: dual 2-form $\partial_{[\mu} A_{\nu \rho]} \propto \epsilon_{\mu \nu \rho \alpha} \partial^{\alpha} \phi$

Analog of dual EM field for magnetic monopoles

Equivalent bulk dynamics: *S* = eq. of state Z $d^4x \, \rho(Y) + \dots$

 $Y \equiv (\partial_{[\mu} {\cal A}_{\nu\rho]})^2$

Effective string theory

String: $X^{\mu}(\tau,\sigma)$ Lorentz 4-vector

world-sheet coordinates

Action

$$
S = S_{\text{bulk}} + S_{\text{KR}} + \ldots
$$

$$
Bulk: \qquad \int d^4x \, \rho(Y) + \dots \qquad Y \equiv (\partial_{[\mu} A_{\nu \rho]})^2
$$

Kalb-Ramond:

Z

$$
\lambda \int d\sigma d\tau \mathcal{A}_{\mu\nu} \partial_{\sigma} X^{\mu} \partial_{\tau} X^{\nu}
$$
\n(analog of

\n
$$
q \int A_{\mu} dx^{\mu}
$$

Perturbation theory: $\overline{X^{\mu}} \rightarrow$ background + $\vec{\pi}(\tau,\sigma)$ $\mathcal{A}_{\mu\nu} \rightarrow \text{background } + A$ $\bar{\bar{A}}$ $(x), B$ $\bar{\bar B}$ (*x*)

(Horn, Nicolis, Penco 2015)

Energy of straight string ours, the energy is defined by *^S* ⁼ ^R *dtE*. The shift in the energy thus is *^A*(*p*~) *J^j ^A*(*p*~) + ¹ 2*Ji ^B*(*p*[~])*iGij ^B*(*p*~) *J^j ^B*(*p*~) ⇤ *,* (6.7)

= *T* + *n*¯²² *w*¯ 1 sion": │ *S*¹ → *S*¹ → ¹ Add ``tension": $S \to S - T$ z $d\sigma d\tau \; \sqrt{\det\partial_\alpha X^\mu \partial_\beta X_\mu}$

RG running: *^d*

$$
\frac{d}{d\log\mu}T(\mu)=-\frac{1}{4\pi}\frac{n^2\lambda^2}{w}
$$

momentum scale

(nonlinear) Kelvin waves

Mechanics of system of vortex rings

$$
\begin{aligned}\n\mathcal{L} &= \sum_{n} \left[\vec{\mu}_n \cdot \dot{\vec{x}}_n + \vec{\mu}_n \cdot (\vec{\nabla} \times \vec{A}) \right] - \int d^3x \left(\partial_i A_j \right)^2 \\
&\to \sum_{n} \left(\vec{\mu}_n \cdot \dot{\vec{x}}_n - \mu_n^{3/2} \log \mu_n \right) - \sum_{n \neq m} \frac{\vec{\mu}_n \cdot \vec{\mu}_m - 3(\vec{\mu}_m \cdot \hat{r})(\vec{\mu}_n \cdot \hat{r})}{r^3}\n\end{aligned}
$$

Peculiar conservation laws:

$$
\vec{P} = \sum_n \vec{\mu}_n
$$
\n
$$
\vec{L} = \sum_n \vec{x}_n \times \vec{\mu}_n
$$

 $\vec{\mu}_n \cdot \vec{\mu}_m - 3(\vec{\mu}_m \cdot \hat{r})(\vec{\mu}_n \cdot \hat{r})$

*r*3

$$
E = \sum_{n} \mu_n^{3/2} \log \mu_n + \sum_{n \neq n}
$$

 $n \neq m$

34

(Garcia-Saenz, Mitsou, Nicolis 2018)

Interactions of string modes with sound T nto sactions of str the momentum of the phonon in the transverse direction is not conserved. However, The integral in *p*~? diverges logarithmically in the UV. We can first isolate and compute the divergent piece of the divergent piece, and in the finite section of the finite section of the finite s piece by dimensional analysis. To do so, recall that the external *B*~ field is concentrated of the coupling *^T*(10)(*µ*), which accompanies the term in the action (5.7) of order *^B*˙ *· ^X*˙ , *S*NG⁰ *dtd|*@*X*[~] *[|]* h ²*T*(10)(˙ *^B*[~] ? *·* [~]*v*?) i *,* (6.31)

 $\ddot{\cdot}$.

of the two final kelvons is given implicitly by their dispersion law: *E* = !*/*2 = 1 *n*₁ *x*₂ *.* (*x*) *a*₂ *.* (2⇡)⁴ (2⇡)⁴ *^Jⁱ* ⇥ ✏ *kab*(*iqa*)*Gjb ^A* (*q*)(*ipl*)*Gil* Phonon —> kelvons conversion:

$$
\sigma = \frac{1}{16\,wc_s^3}\,\omega^2 q\,\sin^4\theta \sim \sqrt{\omega^5/\log\omega}
$$

Example 3: early universe cosmology

Inflation

The early universe: homogeneous and isotropic

Usually modeled via $\varphi_a = \varphi_a(t)$

Time-translations spontaneously broken Systematic effective field theory: Goldstone = adiabatic perturbations $\langle \delta T(\vec{x}_1) \delta T(\vec{x}_2) \rangle$, $\langle \delta T(\vec{x}_1) \delta T(\vec{x}_2) \delta T(\vec{x}_3) \rangle$, ... (cf. superfluid) (Creminelli, Luty, Nicolis, Senatore 2006) (Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Alternative: Solid inflation

t-independent, x-dependent fields: $\varphi_a = \varphi_a(\vec{x})$ time-translations unbroken spatial translations and rotations, broken

use EFT for homogeneous, isotropic solid

(Endlich, Nicolis, Wang 2012)

volume elements' positions Dof: $\phi^I(\vec{x},t)$ $I = 1, 2, 3$

EFT for solids

volume elements' positions Dof: $\boxed{\phi^I(\vec{x},t)} \qquad I=1,2,3$

Cosmological solid

Three scalar fields: $\,\phi^I = x^I + \pi^I\,$ Internal symmetries: $\phi^I \rightarrow \phi^I + a^I$

Action:

$$
S = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G} R + F \left(\partial_\mu \phi^I \partial^\mu \phi^J \right) \right]
$$

 $\boxed{\phi^I \rightarrow SO(3)~\phi^I}$

40

New Goldstone EFT w/ novel predictions

41

Quadrupolar "squeezed limit"

 $\langle \zeta \zeta \zeta \rangle \to f_{NL} \times \langle \zeta \zeta \rangle \langle \zeta \zeta \rangle \times (1 - 3 \cos^2 \theta)$

 $f_{NL} \sim \frac{1}{\epsilon} \frac{1}{c_L^2}$

2% overlap w/ "local" shape 39% w/ "equilateral" 32% w/ "orthogonal"

Conclusions

Spontaneously broken symmetries, Goldstone modes, effective field theories:

> Extremely general concepts and powerful tools

Many potential applications in condensed matter, hydrodynamics, and cosmology