AN INTRODUCTION TO THE PHYSICS OF AXIONS

Gabriel María Ybarra Marcaida

Supervised by Georges Obied & Mario Reig López 25th November 2024

Merton College, University of Oxford

Motivation - The Strong CP Problem

The QCD axion

Axions from higher dimensions

Axion Phenomenology

Conclusions

Motivation - The Strong CP Problem

$$\mathcal{L}_{\text{QCD}}^{\prime} = -\frac{1}{2} \operatorname{Tr} \, G_{\mu\nu} G^{\mu\nu} + \sum_{i}^{N_{f}} \bar{q}_{i} \left(i \not\!\!\!D - m_{i} \right) q_{i} \qquad ,$$

$$\begin{split} \mathcal{L}_{\text{QCD}}^{\prime} &= -\frac{1}{2} \operatorname{Tr} \, G_{\mu\nu} G^{\mu\nu} + \sum_{i}^{N_{f}} \bar{q}_{i} \left(i \not\!\!\!D - m_{i} \right) q_{i} + \theta \frac{g^{2}}{16\pi^{2}} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}, \\ & \text{where} \quad \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma}. \end{split}$$

$$\begin{split} \mathcal{L}_{\text{QCD}}^{\prime} &= -\frac{1}{2} \operatorname{Tr} \, G_{\mu\nu} G^{\mu\nu} + \sum_{i}^{N_{f}} \bar{q}_{i} \left(i \not\!\!\!D - m_{i} \right) q_{i} + \theta \frac{g^{2}}{16\pi^{2}} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}, \\ & \text{where} \quad \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma}. \end{split}$$

Properties:

Violates CP-symmetry as ${
m Tr}\, { ilde G}^{\mu
u} G_{\mu
u} \propto {
m Tr}\, {
m E}\cdot {
m B}$

$$\begin{split} \mathcal{L}_{\text{QCD}}^{\prime} &= -\frac{1}{2} \operatorname{Tr} \, G_{\mu\nu} G^{\mu\nu} + \sum_{i}^{N_{f}} \bar{q}_{i} \left(i \not\!\!\!D - m_{i} \right) q_{i} + \theta \frac{g^{2}}{16\pi^{2}} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}, \\ & \text{where} \quad \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma}. \end{split}$$

Properties:

Violates CP-symmetry as ${\rm Tr}\, {\tilde G}^{\mu
u} G_{\mu
u} \propto {\rm Tr}\, {f E} \cdot {f B}$

Total derivative:
$$\mathcal{L}_{\theta} = \theta \frac{g^2}{8\pi^2} \partial_{\mu} K^{\mu} \implies S_{\theta} = \nu \theta, \nu \in \mathbb{Z}$$
 (instantons).

$$\begin{split} \mathcal{L}_{\text{QCD}}^{\prime} &= -\frac{1}{2} \operatorname{Tr} \, G_{\mu\nu} G^{\mu\nu} + \sum_{i}^{N_{f}} \bar{q}_{i} \left(i \not\!\!\!D - m_{i} \right) q_{i} + \theta \frac{g^{2}}{16\pi^{2}} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}, \\ & \text{where} \quad \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma}. \end{split}$$

Properties:

Violates CP-symmetry as ${\sf Tr}\, {\tilde G}^{\mu
u} G_{\mu
u} \propto {\sf Tr}\, {\sf E}\cdot {\sf B}$

Total derivative:
$$\mathcal{L}_{\theta} = \theta \frac{g^2}{8\pi^2} \partial_{\mu} K^{\mu} \implies S_{\theta} = \nu \theta, \nu \in \mathbb{Z}$$
 (instantons).

Creates a vacuum potential $V_{QCD}(\theta)$ which is minimal for $\bar{\theta} = 0$.

We want to measure θ . Which magnitudes *violate* CP symmetry?

We want to measure θ . Which magnitudes *violate* CP symmetry?

Electric Dipole Moments!

The Theta term - EDM of the neutron

EDM of the neutron: From Chiral Perturbation Theory:

 $d_n \approx \bar{\theta} \cdot 2, 5 \times 10^{-16} \,\mathrm{e} \,\mathrm{cm}$

Figure 1: Feynman diagram giving the first order contribution to the neutron eDM.

The Theta term - EDM of the neutron

Figure 1: Feynman diagram giving the first order contribution to the neutron eDM.

EDM of the neutron: From Chiral Perturbation Theory:

$$d_n \approx \bar{\theta} \cdot 2, 5 \times 10^{-16} \,\mathrm{e} \,\mathrm{cm}$$

From experiments:

$$d_n < 1,8 \times 10^{-26} \,\mathrm{e} \,\mathrm{cm}$$

The Theta term - EDM of the neutron

Figure 1: Feynman diagram giving the first order contribution to the neutron eDM.

EDM of the neutron: From Chiral Perturbation Theory:

$$d_n \approx \bar{\theta} \cdot 2, 5 \times 10^{-16} \,\mathrm{e} \,\mathrm{cm}$$

From experiments:

$$d_n < 1,8 \times 10^{-26} \,\mathrm{e} \,\mathrm{cm}$$

Conclusion:

 $\bar{\theta} < 10^{-10}$

NB: $\bar{\theta} = \theta + \theta_u + \theta_d$

The Strong CP Problem:

Why Nature sets $\bar{\theta} \approx 0$?

The Strong CP Problem:

Why Nature sets $\bar{\theta} \approx 0$?

Why does QCD conserve CP symmetry?

• There is no CP problem.

• There is no CP problem. – Not satisfying.

- There is no CP problem. Not satisfying.
- A quark is massless.

- There is no CP problem. Not satisfying.
- A quark is massless.- Unlikely.

- There is no CP problem. Not satisfying.
- A quark is massless.- Unlikely.
- Axions!

The QCD axion

Introduce a scalar field *a* with coupling $\mathcal{L}_{PQ} = \frac{a}{f_a} \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G}$.

$$\mathcal{L}'_{\theta} = \left(\frac{a}{f_a} + \theta\right) \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G} \implies \bar{\theta}_{eff} = \bar{\theta} + \frac{a}{f_a}$$

The QCD vacum energy is minimised for $\langle a \rangle \approx -f_a \bar{\theta}_0$, so $\bar{\theta}_{eff}$ vanishes!

Introduce a scalar field *a* with coupling $\mathcal{L}_{PQ} = \frac{a}{f_a} \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G}$.

$$\mathcal{L}'_{\theta} = \left(\frac{a}{f_a} + \theta\right) \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G} \implies \bar{\theta}_{eff} = \bar{\theta} + \frac{a}{f_a}$$

The QCD vacum energy is minimised for $\langle a \rangle \approx -f_a \bar{\theta}_0$, so $\bar{\theta}_{eff}$ vanishes!

The complete Lagrangian is

$$\mathcal{L}_{PQ} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - \frac{m_a^2}{2} a^2 + \frac{a}{f_a} \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G}$$

The QCD Axion - The axion

Problem: Peccei-Quinn mechanism is an EFT!

Problem: Peccei-Quinn mechanism is an EFT!

KSVZ model

Introduce a heavy quark singlet Q and a complex scalar ϕ with

$$V_{\text{KSVZ}} = -m^2 |\phi|^2 + \lambda |\phi|^4 + y Q_L \phi Q_R + \text{h.c.}$$

There is a global $U(1)_{PQ}: \phi \to e^{i\alpha}\phi, \quad Q_L \to e^{i\alpha}Q_L$

Break $U(1)_{PQ}$ with a Higgs-like potential. The axion is the Goldstone.

Integrating out the quarks gives the coupling $\mathcal{L}_{PQ} = \frac{a}{f_a} \frac{g^2}{16\pi^2} \operatorname{Tr} G\tilde{G}$.

The Axion Quality Problem

We have a global

$$U(1)_{PQ}: \phi \to e^{i\alpha}\phi, \quad Q_L \to e^{i\alpha}Q_L.$$

We have a global

$$U(1)_{PQ}: \phi \to e^{i\alpha}\phi, \quad Q_L \to e^{i\alpha}Q_L.$$

Problem: Terms like
$$\mathcal{L}_{PQV}^n = \frac{c}{M_P^{n-4}}\phi^n + \text{h.c.}$$
 explicitly break $U(1)_{PQ}!$

We have a global

$$U(1)_{PQ}: \phi \to e^{i\alpha}\phi, \quad Q_L \to e^{i\alpha}Q_L.$$

Problem: Terms like
$$\mathcal{L}_{PQV}^n = \frac{c}{M_P^{n-4}}\phi^n + \text{h.c.}$$
 explicitly break $U(1)_{PQ}!$

Potential shift :

$$V_{PQV}^{n}(a) = 2|c|M_{P}^{4}\left(\frac{f_{a}}{M_{P}}\right)^{n}\cos\left(n\frac{a}{f_{a}}+\varphi\right).$$

We have a global

$$U(1)_{PQ}: \phi \to e^{i\alpha}\phi, \quad Q_L \to e^{i\alpha}Q_L.$$

Problem: Terms like $\mathcal{L}_{PQV}^n = \frac{c}{M_P^{n-4}}\phi^n + \text{h.c.}$ explicitly break $U(1)_{PQ}!$

Potential shift :

$$V_{PQV}^{n}(a) = 2|c|M_{P}^{4}\left(\frac{f_{a}}{M_{P}}\right)^{n}\cos\left(n\frac{a}{f_{a}}+\varphi\right).$$

The Strong CP Problem is reintroduced!!!

- Fine tuning of c. We move the CP problem to the c problem.
- Forbid \mathcal{L}_{PQV}^{n} with a discrete gauge \mathbb{Z}_{12} . "Unnatural."
- Guage *U*(1)_{PQ}!

Axions from higher dimensions

We introduce a fifth compact spatial dimension with coordinate y. We introduce a U(1) gauge field A(x, y) which gives the axion once compactified:

$$a(x) = \oint dy A_5(x,y) \equiv \int_0^{2\pi R} dy A_5(x,y).$$

Then the kinetic term of A gives us

$$\mathcal{L}_{kin} = \oint dy - \frac{1}{4e^2} F_{MN} F^{MN} = -\frac{1}{8\pi Re^2} \partial_\mu a \, \partial^\mu a \equiv -\frac{1}{2} f^2 \, \partial_\mu a \, \partial^\mu a$$

We introduce a fifth compact spatial dimension with coordinate y. We introduce a U(1) gauge field A(x, y) which gives the axion once compactified:

$$a(x) = \oint dy A_5(x,y) \equiv \int_0^{2\pi R} dy A_5(x,y).$$

Then the kinetic term of A gives us

$$\mathcal{L}_{kin} = \oint dy - \frac{1}{4e^2} F_{MN} F^{MN} = -\frac{1}{8\pi Re^2} \partial_\mu a \, \partial^\mu a \equiv -\frac{1}{2} f^2 \, \partial_\mu a \, \partial^\mu a$$

Straightforward to extend to higher dimensions!

We now want to couple a to G. Slight difference, now

$$\tilde{G}^{MNP} \equiv (\star_{5D} G)^{MNP} := \frac{1}{3!} \epsilon^{MNPQR} G_{QR}$$
$$\mathcal{L}_{CS} = \frac{1}{8\pi^2} \oint dy \, A_5 \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu5} = \frac{1}{8\pi^2} a(x) \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}.$$

We now want to couple a to G. Slight difference, now

$$\tilde{G}^{MNP} \equiv (\star_{5D}G)^{MNP} := \frac{1}{3!} \epsilon^{MNPQR} G_{QR}$$
$$\mathcal{L}_{CS} = \frac{1}{8\pi^2} \oint dy \, A_5 \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu5} = \frac{1}{8\pi^2} a(x) \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}.$$

Again, straightforward to extend to higher dimensions! NB: $A_{\mu}^{QCD} = A_{\mu}^{QCD}(x), A_{5}^{QCD} = A_{5}^{QCD}(y)$

Axions from Higher Dimensions - Axionic potential

There may also be scalar massive 5D fields ϕ_{5D} coupled to *a* through $\mathcal{D}_M \phi_{5D} \mathcal{D}^M \phi_{5D}$.

 $V_{\text{axionic}}(a) = V_{QCD}(a) + V_{\text{eff}}(a)$

Axions from Higher Dimensions - Axionic potential

There may also be scalar massive 5D fields ϕ_{5D} coupled to *a* through $\mathcal{D}_M \phi_{5D} \mathcal{D}^M \phi_{5D}$.

$$V_{\text{axionic}}(a) = V_{QCD}(a) + V_{\text{eff}}(a)$$

We integrate the ϕ_{5D} out. Semi-clasically:

$$S(\gamma) = \int_{\gamma} d\tau \left(m_{5D} + iq A_{\rm M} \frac{dx^{\rm M}}{d\tau} \right)$$

as $A_5 = \frac{a}{2\pi R}$, using the saddle point approximation, $e^{-S(\gamma)} + e^{-S(-\gamma)} \sim e^{-2\pi R \nu m_{5D}} \cos(q\nu a)$

Axions from Higher Dimensions - Axionic potential

There may also be scalar massive 5D fields ϕ_{5D} coupled to *a* through $\mathcal{D}_M \phi_{5D} \mathcal{D}^M \phi_{5D}$.

$$V_{\text{axionic}}(a) = V_{QCD}(a) + V_{\text{eff}}(a)$$

We integrate the ϕ_{5D} out. Semi-clasically:

$$S(\gamma) = \int_{\gamma} d\tau \left(m_{5D} + iq A_M \frac{dx^M}{d\tau} \right)$$

as $A_5 = \frac{a}{2\pi R}$, using the saddle point approximation,

$$e^{-S(\gamma)} + e^{-S(-\gamma)} \sim e^{-2\pi R \nu m_{5D}} \cos(q \nu a)$$

$$V_{eff}(a) = \sum_{\nu>0} c_{\nu} e^{-2\pi R \nu m_{5D}} \cos(q \nu a) \ll V_{QCD}(a)$$

The axion quality problem is exponentially small!

Axions from Higher Dimensions - Other considerations

- This last part is formalised using the Coleman-Weinberg potential. 5D computation available in several papers¹².
- We can also extend this to higher dimensions (see my thesis).
- How do we interpret the U(1)? What's the conserved charge?

¹I. Antoniadis, K. Benakli, et al., *"Finite Higgs mass without Supersymmetry"*, New Journal of Physics 3, 10.1088/1367-2630/3/1/320 (2001)

²A. Delgado, A. Pomarol, et al., "Supersymmetry and Electroweak breaking from extra dimensions at the TeV-scale", Physical Review D - Particles, Fields, Gravitation and Cosmology 60, 10.1103/PhysRevD.60.095008 (1998).

Axions from Higher Dimensions - Other considerations

- This last part is formalised using the Coleman-Weinberg potential. 5D computation available in several papers¹².
- We can also extend this to higher dimensions (see my thesis).
- How do we interpret the U(1)? What's the conserved charge?

Classical EOM:
$$\frac{1}{2\pi} d(f^2 \star da) = \frac{1}{8\pi^2} \operatorname{Tr} G \wedge G$$
,

The conserved charge is the instanton number.

NB: d Tr $G \land G = 2$ Tr d $G \land G = 2$ Tr $\mathcal{D}G \land G = 0$

¹I. Antoniadis, K. Benakli, et al., *"Finite Higgs mass without Supersymmetry"*, New Journal of Physics 3, 10.1088/1367-2630/3/1/320 (2001)

²A. Delgado, A. Pomarol, et al., "Supersymmetry and Electroweak breaking from extra dimensions at the TeV-scale", Physical Review D - Particles, Fields, Gravitation and Cosmology 60, 10.1103/PhysRevD.60.095008 (1998).

Axion Phenomenology

Axions are not only coupled to QCD:

Other couplings

Axion-Photon coupling:

 $\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}.$

Axion-fermion pseudo-vectorial coupling:

$$g_{\rho} \frac{\partial_{\mu} a}{f_a} \, \bar{\psi} \gamma^{\mu} \gamma^5 \psi.$$

NB: These couplings are model-dependent, and the coupling constants are a function of the parameters of the theory.

Axion-Like Particles

ALPs are particles that have the same couplings as the QCD axion, EXCEPT that they are not coupled to QCD. Notably

$$\frac{g_{a\gamma\gamma}}{4}aF_{\mu
u} ilde{F}^{\mu
u}.$$

NB: ALPs don't solve the Strong CP Problem.

Properties of ALPs

Very light scalars (Goldstones)

Weakly interacting

Long lived (small coupling constants)

Natural cold dark matter candidate!

Axion Phenomenology - Light-shining-through wall experiment

The concept of the light-shining-through-walls experiments³

³R. Battesti, et al., *"High magnetic fields for fundamental physics"*, Phys. Rept. **765-766**, 1-39, 10.1016/j.physrep.2018.07.005 (2018)

Axion Phenomenology - ABRACADABRA

$$\nabla \times \mathbf{B} = \mathbf{J} + g_{a\gamma\gamma} \frac{\partial a}{\partial t} \mathbf{B}$$

Schematic of the effective axion-induced current (blue), sourced by the magnetic field inside the

torus, generating a magnetic field (magenta)⁴.

⁴C. P. Salemi, J. W. Foster, et al., *"The search for low-mass axion dark matter with ABRACADABRA-10cm"*, Physical Review Letters 127, 10.1103/PhysRevLett.127.081801 (2021).

Conclusions

Conclusions - Summary

Summary

Axions are strongly theoretically and phenomenologically motivated.

Theoretical ideas (AQP and gauging instantons) naturally leads to higher-dimensional theories (String Theory).

Hard to detect because of the small mass and weakly interacting, but "Cheap" tabletop experiments.

Hot topic.

AN INTRODUCTION TO THE PHYSICS OF AXIONS

Gabriel María Ybarra Marcaida

Supervised by Georges Obied & Mario Reig López 25th November 2024

Merton College, University of Oxford

