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Motivation - The Strong CP
Problem



The Strong CP Problem -The Theta term

L′
QCD = − 1

2
Tr GµνGµν +

Nf∑
i

q̄i
(
i/D −mi

)
qi

+ θ
g2

16π2
TrGµν G̃µν

,

where G̃µν =
1
2
εµνρσGρσ.

Properties:

Violates CP-symmetry as Tr G̃µνGµν ∝ Tr E · B

Total derivative: Lθ = θ
g2

8π2
∂µKµ =⇒ Sθ = νθ, ν ∈ Z (instantons).

Creates a vacuum potential VQCD(θ) which is minimal for θ̄ = 0.
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The Strong CP Problem - Measuring θ

We want to measure θ. Which magnitudes violate CP symmetry?

Electric Dipole Moments!
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The Theta term - EDM of the neutron

γ

q

π± π±

p

n p

p′

n

Figure 1: Feynman diagram giving the
first order contribution to the neutron
eDM.

EDM of the neutron:
From Chiral Perturbation Theory:

dn ≈ θ̄ · 2, 5× 10−16 e cm

From experiments:

dn < 1, 8× 10−26 e cm

Conclusion:

θ̄ < 10−10

NB: θ̄ = θ + θu + θd
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The Strong CP Problem

The Strong CP Problem:

Why Nature sets θ̄ ≈ 0?

Why does QCD conserve CP symmetry?
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The Strong CP Problem - Possible Solutions

• There is no CP problem.

– Not satisfying.

• A quark is massless.– Unlikely.

• Axions!
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The QCD axion



The QCD Axion - The Peccei-Quinn Mechanism

Introduce a scalar field a with coupling LPQ =
a
fa

g2

16π2
TrGG̃.

L′
θ =

(
a
fa

+ θ

)
g2

16π2
TrGG̃ =⇒ θ̄eff = θ̄ +

a
fa

The QCD vacum energy is minimised for 〈a〉 ≈ −faθ̄0, so θ̄eff vanishes!

The complete Lagrangian is

LPQ =
1
2
∂µa ∂µa−

m2
a
2
a2 + a

fa
g2

16π2
TrGG̃
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The QCD Axion - The axion
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The QCD Axion - The KSVZ model

Problem: Peccei-Quinn mechanism is an EFT!

KSVZ model
Introduce a heavy quark singlet Q and a complex scalar φ with

VKSVZ = −m2|φ|2 + λ|φ|4 + yQLφQR + h.c. .

There is a global U(1)PQ : φ→ eiαφ, QL → eiαQL

Break U(1)PQ with a Higgs-like potential. The axion is the Goldstone.

Integrating out the quarks gives the coupling LPQ =
a
fa

g2

16π2
TrGG̃.
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The Axion Quality Problem

We have a global

U(1)PQ : φ→ eiαφ, QL → eiαQL.

Problem: Terms like LnPQV =
c

Mn−4
P

φn + h.c. explicitly break U(1)PQ!

Potential shift :

VnPQV(a) = 2|c|M4
P

(
fa
MP

)n

cos

(
n a
fa

+ ϕ

)
.

The Strong CP Problem is reintroduced!!!
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The Axion Quality Problem - Possible Solution

• Fine tuning of c. – We move the CP problem to the c problem.

• Forbid LnPQV with a discrete gauge Z12. - “Unnatural.”

• Guage U(1)PQ!
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Axions from higher dimensions



Axions from Higher Dimensions - Basics

We introduce a fifth compact spatial dimension with coordinate y.

We introduce a U(1) gauge field A(x, y) which gives the axion once
compactified:

a(x) =
∮
dy A5(x, y) ≡

∫ 2πR

0
dy A5(x, y).

Then the kinetic term of A gives us

Lkin =
∮
dy − 1

4e2
FMNFMN = − 1

8πRe2
∂µa ∂µa ≡ − 1

2
f 2 ∂µa ∂µa

Straightforward to extend to higher dimensions!
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Axions from Higher Dimensions - Coupling to gluons

We now want to couple a to G. Slight difference, now

G̃MNP ≡ (?5DG)MNP :=
1
3!
εMNPQRGQR

LCS =
1
8π2

∮
dy A5 TrGµν G̃µν5 =

1
8π2

a(x) TrGµν G̃µν .

Again, straightforward to extend to higher dimensions!

NB: AQCDµ = AQCDµ (x),AQCD5 = AQCD5 (y)
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Axions from Higher Dimensions - Axionic potential

There may also be scalar massive 5D fields φ5D coupled to a through
DMφ5DDMφ5D.

Vaxionic(a) = VQCD(a) + Veff(a)

We integrate the φ5D out. Semi-clasically:

S(γ) =
∫
γ

dτ
(
m5D + iqAM

dxM

dτ

)

as A5 =
a
2πR

, using the saddle point approximation,

e−S(γ) + e−S(−γ) ∼ e−2πRνm5D cos (qνa)

Veff (a) =
∑
ν>0

cνe−2πRνm5D cos (qνa) � VQCD(a)

The axion quality problem is exponentially small!
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Axions from Higher Dimensions - Other considerations

• This last part is formalised using the Coleman-Weinberg
potential. 5D computation available in several papers12.

• We can also extend this to higher dimensions (see my thesis).
• How do we interpret the U(1)? What’s the conserved charge?

Classical EOM: 1
2π
d
(
f 2 ? da

)
=

1
8π2

TrG ∧ G,

The conserved charge is the instanton number.

NB: dTrG ∧ G = 2 Tr dG ∧ G = 2 TrDG ∧ G = 0

1I. Antoniadis, K. Benakli, et al., “Finite Higgs mass without Supersymmetry”, New
Journal of Physics 3, 10.1088/1367-2630/3/1/320 (2001)
2A. Delgado, A. Pomarol, et al., “Supersymmetry and Electroweak breaking from extra
dimensions at the TeV-scale”, Physical Review D - Particles, Fields, Gravitation and
Cosmology 60, 10.1103/PhysRevD.60.095008 (1998).
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Axion Phenomenology



Axion Phenomenology - Other couplings

Axions are not only coupled to QCD:

Other couplings
Axion-Photon coupling:

gaγγ
4

aFµν F̃µν .

Axion-fermion pseudo-vectorial coupling:

gp
∂µa
fa

ψ̄γµγ5ψ.

NB: These couplings are model-dependent, and the coupling
constants are a function of the parameters of the theory.
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Axion Phenomenology - Axion-Like Particles

Axion-Like Particles

ALPs are particles that have the same couplings as the QCD axion,
EXCEPT that they are not coupled to QCD. Notably

gaγγ
4

aFµν F̃µν .

NB: ALPs don’t solve the Strong CP Problem.
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Axion Phenomenology - Axion-Like Particles II

Properties of ALPs

Very light scalars (Goldstones)

Weakly interacting

Long lived (small coupling constants)

Natural cold dark matter candidate!
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Axion Phenomenology - Light-shining-through wall experiment

gaγγ
4

aFµν F̃µν .

The concept of the light-shining-through-walls experiments3

3R. Battesti, et al., “High magnetic fields for fundamental physics”, Phys. Rept. 765-766,
1-39, 10.1016/j.physrep.2018.07.005 (2018)
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Axion Phenomenology - ABRACADABRA

∇× B = J+ gaγγ
∂a
∂t
B

Schematic of the effective axion-induced current (blue), sourced by the magnetic field inside the

torus, generating a magnetic field (magenta)4 .

4C. P. Salemi, J. W. Foster, et al., “The search for low-mass axion dark matter with
ABRACADABRA-10cm”, Physical Review Letters 127, 10.1103/PhysRevLett.127.081801 (2021).
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Conclusions



Conclusions - Summary

Summary

Axions are strongly theoretically and phenomenologically
motivated.

Theoretical ideas (AQP and gauging instantons) naturally leads to
higher-dimensional theories (String Theory).

Hard to detect because of the small mass and weakly interacting,
but “Cheap” tabletop experiments.

Hot topic.
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