In View of Large Detector Arrays: Automated Analysis Modules for Direct Dark Matter Search

Maximilian Gapp IMPRS recruiting workshop Garching, 25.11.2024

Dark Matter

- 84% of the matter in our universe is made of dark matter
- Evidence on all length scales
- Nature after ~100 years of research still unknown

One way to search for dark matter: Direct detection

- Model particle
- Detection of nuclear recoil

- Model particle
- Detection of nuclear recoil

Cryogenic Detectors

- Target material cooled to <10 mK
- Particle deposits energy in the form of phonons/heat
- Temperature change ~µK measured with Transition Edge Sensor (TES)

Why Automation?

- Scaling: Analysing larger detector arrays is currently impractical Planned: COSINUS (48 channels) and CRESST upgrade (288 channels)
- **Time Constraints:** Manual data analysis is slow, resource-intensive and requires experience
- **Bias:** Automated tools provide an unbiased check for human analyses, boosting confidence

Objectives

- and saving time
- reproducible results
- characteristics

• Automate where Possible: Streamline the analysis process, reducing manual effort

Minimize Human Input: Limit reliance on assumptions, ensuring unbiased and

• **Be Adaptable:** Design to accommodate diverse detector modules with varying

Objectives

- Automate where Possible: Streamline the analysis are and saving time
- Minimize reproducib
- Be Adapta characterist

Development and verification of an automated analysis workflow designed to efficiently characterize COSINUS sed and varying

manual effort

Trigger

- Raw data: voltage stream
- Apply a trigger with as few assumptions as possible
- Minimize deadtime

Mean-Trigger

- Typical trigger algorithm
- Moving average trigger
- No assumption on pulse-shape

Frequency-Trigger

Assumption:

Frequency content of a pulse consists mainly of low frequencies

- Trigger on change of integrated low-frequency content
- Assumption: Cutoff frequency (50 Hz)

1.0

0.8

0.2

0.0

More Details: E. Agletdinov, "A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission"

		re	e	9	ln	e	1	10	зy	18	an	ge	•
	1				1	ţ		1			t		
						t		1					
	İ				1	t		1			t		
					+	÷		+			÷		
	1				-	Ŧ					Ŧ		
								÷					
					#	‡		#			÷		
					+	t		1			t		
	Ì					T	1	T			Ť		
								+					
						÷		÷					
	i					÷	1	+-			+-		
					Ţ	Ţ		Ţ			L		
					#	ŧ		÷			÷		
	Ì	_				t		1					
	1			1		-		1			Ļ		
				1		t	ł	4			+-		
							J						
								-+-			÷		
					Ŧ	ł							
_	ĺ			Ì			Ì	-					

Frequency-Trigger

- Assumption: 0.100 Frequency content of a pulse Amplitude ∑ 0.050 0.050 consists mainly of low frequencies 0.000
- Trigger on change of integrated low-frequency content
- Assumption: Cutoff frequency (50 Hz)

0.01 Amplitude [V] 0.00 -0.01

More Details: E. Agletdinov, "A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission"

Performance Comparison

- Superimpose random drawn windows with event of different amplitudes
- If trigger and simulation point coincide, consider as valid
- Frequency trigger best candidate for first trigger

Performance Comparison

- Superimpose random drawn windows with event of different amplitudes
- If trigger and simulation point coincide, consider as valid
- Frequency trigger best candidate for first trigger

_	_	_	_	_	_	_	_	_
								_
-	-	-	-	-				
,	C		~	4				
	-		=					•

Standard Event

Resolution

Maximilian Gapp | IMPRS | 25.November 2024

Characterize the Noise

- Draw and clean empty traces \bullet
- Create a Noise Power Spectrum (NPS)
- Characterizes the <u>average</u> noise conditions

Characterize the Noise

- Draw and clean empty traces
- Create a Noise Power Spectrum (NPS)
- Characterizes the <u>average</u> noise conditions

NPS-Generator

- Sequence of different trigger/cleaning modules
- Cleans data stream from events and artifacts
- **Advantages** \bullet
 - NPS creation without human input
 - Fast and reliable results

Standard Event

Resolution

Maximilian Gapp | IMPRS | 25.November 2024

Validate Events

- Distinguish valid events from artifacts
- Neural Network Approach:
 - Train Neural Network with real events and artifacts
 - Network learns to identify patterns in the pulse shapes
 - Existing Neural Network from CRESST (trained with one million real events)

Cryogenic Rare Event Search with Superconducting Thermometers

More Details: F. Wagner, "Towards next-generation cryogenic dark matter searches with superconducting thermometers.

Adaptation of the Neural Network

- than CRESST-pulses

Adaptation of the Neural Network

 Poor performance on simulated COSINUS events

- Good performance for events above noise level
- Some artifacts mislabeled as valid events

Classify Event types

Possible approach

Apply principal component analysis

Cluster with DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Create average pulse of clusters and select pulse shape of absorber events

Classify Event types

Possible approach

Apply principal component analysis

Cluster with DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Create average pulse of clusters and select pulse shape of absorber events

Standard Event

Resolution

Maximilian Gapp | IMPRS | 25.November 2024

Create the Optimum Filter

 Create optimum filter from SEV and NPS

$$H(\omega) = h \frac{SEV^*(\omega)}{NPS(\omega)} e^{-2\pi i \omega \tau}$$

- Well established pulse height reconstruction method
- Best signal/noise ratio for the given signal shape and assuming constant noise conditions (NPS)

Results

	What analyse type	Resolution [mV]
	Handmade [Me]	0.420±0.002
Training Dataset	Handmade [Published]	0.379±0.009*
	Automation	0.377±0.002
	Handmade [Me]	2.90±0.03
Validation Dataset	Handmade [Published]	1.86±0.04**
	Automation	2.35±0.02

* In Energy: 0.441±0.011keV

** In Energy: 2.07±0.02keV

Maximilian Gapp | IMPRS | 25.November 2024

G. Angloher *et al.*, Deep underground dark matter search with a COSINUS detector prototype, Phys. Rev. D 110, 043010 G. Angloher *et al.*, Particle discrimination in a Nal crystal using the COSINUS remote TES design, Phys. Rev. D 109, 082003

What's next?

- Implementation of control levels to avoid using modules as a black box
- Training of a neural network on COSINUS pulses
- Modules soon available in analysis packages Cait and CAT

Backup

Maximilian Gapp | IMPRS | 25.November 2024

"Summer Run"

- Underground measurement carried out in a cryostat from CRESST at Laboratori Nazionali del Gran Sasso
- Low noise level
- All modules developed and optimized on this dataset
- Best module performance expected
- For more details, see <u>https://arxiv.org/pdf/2307.11139</u>

- Munich
- Higher noise level and data rate
- "Stress test" for the modules

"Christmas Run"

Above-Ground-Data carried out in a cryostat from CRESST in

• For more details, see <u>https://arxiv.org/pdf/2307.11066</u>

Frequency-Trigger

- Assumption: Pulse-shape is defined mainly by low-frequency content
- Calculate Forurietranform for a moving window
- Integrate up to cutoff frequency (50 Hz)
- Build difference between two lacksquareconsecutive windows

Frequency-Trigger

- Assumption: Pulse-shape is defined mainly by low-frequency content
- Calculate Forurietranform for a lacksquaremoving window
- Integrate up to cutoff frequency (50 Hz)
- Build difference between two consecutive windows

Bessel-Trigger

- Create a matched filter using Noise Power Spectrum and Bessel filter as an approximation of pulse shape
- Assumption on pulse shape: cutoff frequency
- Noise Power Spectrum needed

Baseline Resolution Determination

- Define set of clean empty baselines
- Superimpose with scaled SEV
- Reconstruct pulse height with OF
- Determine the standard deviation

Threshold

- Apply OF on cleaned baselines
- Fit probability function to the histogram of pulse heights

$$P_d(x) = \frac{d}{\sqrt{2\pi\sigma}} \left(e^{-(\frac{x}{\sqrt{2\sigma}})^2} \right) \left(0.5 + \frac{erf(x/(\sqrt{2\sigma}))}{2} \right)^{d-1}$$

$$NTR(x_{th}) = \frac{1}{t \cdot m} \int_{x_{th}}^{\infty} P_d(x) dx$$

More Details: M. Mancuso, A. Bento, N. F. Iachellini, D. Hauff, F. Petricca, F. Pro⁻bst, J. Rothe, and R. Strauss, "A method to define the energy threshold depending on noise level for rare event searches," 2019.

Maximilian Gapp | IMPRS | 25.November 2024

NPS-Generator

- Sequence of different trigger/cleaning modules
- Cleans data stream from events and artifacts
- Advantages \bullet
 - NPS creation without human input
 - ➡ Fast and reliable results

Data Stream

Level-Shift-Detector

Frequency-Trigger

Mean-Trigger

Baseline-Generator

Decaying-Baseline-Remover

NPS

Performance Test

- Handmade and generated NPS very similar
- Create OF with handmade and generated NPS

Summer Run

	=	20665	-
_		20000	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
	=	20665	
		20665	
		20665	
		20665	
		20665	

Christmas Run

Maximilian Gapp | IMPRS | 25.November 2024

- 1	6094	
_	0094	
	_	
=	6094	
=	6094	
=	6094	
=	6094	
=	6094	
=	6094	
= (6094	
=	6094	
	6094	
	6094	
=	6094	
	6094	
	6094	

Adaptation of the Neural Network

- Good performance for events above noise level
- Some artifacts mislabeled as valid events

Performance Test

- Generated SEV similar to handmade SEV
- Compare the performance of fully generated OF vs. handmade OF

Summer Run

 Generated OF has a superior threshold compared to the handmade OF

Christmas Run

- Same threshold for both OF
- Relative high noise level forces threshold to be set to high values

Images

- [1] <u>https://iopscience.iop.org/book/mono/978-0-7503-3731-1/chapter/</u> bk978-0-7503-3731-1ch6
- [2] Florian Reindl