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Introduction
• At hadron collider, like the LHC, a critical task is 

the reconstruction of intermediate resonances 
from Higgs-, W- or Z-bosons, or from a top quark 
decay 

• Decays into partons (hadronic decays) are 
particularly difficult (but also leptonic decays are 
challenging when neutrinos are involved) 

• Due to color confinement, partons cannot be 
observed directly in experiment 

• Instead, they form jets of particles 

• Jet algorithms are applied as a proxy for a single 
quark, or to reconstruct an intermediate resonance 
directly (H, W, Z, t) 
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How we reconstruct



Jet Reconstruction
• Many different approaches for jet-analysis 

• Most commonly used: Recursive clustering 
algorithms 

• Quantity to describe the size of the jets 
 

• Typical values at the LHC: 

• Large-R jets - R=0.8 

• Small-R jets - R=0.4 

• New approach: 

• Mini-Jets - R=0.1 

• Idea: parton-jet duality for sufficiently hard 
partons from matrix element or hard radiation in 
Parton shower, but less sensitive to soft radiation 

• Challenge: reconstruct H, W, Z-bosons or tops 
quarks from mini-jets 

ΔR = (Δϕ)2 + (Δη)2
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Jets at hadron colliders (2); Gavin Salam



Mini-Jets
• Idea of jet algorithms in common LHC analyses: 

• Define a suitable jet algorithm and size (R=0.4, 0.8, 
etc.) 

• Assumption: All information of the hard process is 
contained in the selected jets and (isolated) leptons 

• Limitations through different event topologies and 
hard radiation 

• Idea of mini-jets: 

• Use many very small jets and collect all information 

• Capture details of hard radiation 

• Sensible jet multiplicity of <n> ~15 

• But: Difficult to handle combinatorics to reconstruct 
underlying hard physics 
 
→ Solution: Let a neural network handle the 
excessive information and high combinatorics
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Underlying Physics and Data
• Pair of top quarks, produced in proton-proton 

collisions, decays into two W-bosons and two bottom 
quarks 

• Centre of mass energy: 13 TeV 

• W-bosons decay semi leptonically 

• Leptonic W-boson → lepton and neutrino 

• Hadronic W-boson → quark and anti-quark 

• Monte Carlo Simulation: 

• Particle-level analysis 

• Anti-kt algorithm (different R-values) 

• ME, parton-shower and hadronization from Pythia 
8.3
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Neural Network Architecture
• Jet Features: 

• Mini-jets with 9 features ( b-tag) 

• Global Features (Lepton and missing energy): 

• 3 final-state lepton features ( ) 

• 2 Missing features ( ) 

• Global pooling for jets & concatenation of jets and global features 

• Core layer: 

• Multiple dense layers with all relevant information of the event 

• Output: 

• Extracting information for a specific resonance 

• Size of network ( ) parameters

pT, η, ϕ, px, py, pz, E, m,

pT, η, ϕ

px, py

𝒪 106
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Training the Model
• Start with training one output particle 

• Easiest particle for the model in this case: W-boson decaying leptonically 

• Get to more difficult particles step by step 

• Use weights from leptonic W-boson to train top quarks and the invariant mass of top quark pair 

• Use weights from these two models to train bottom quarks and hadronic W-boson

8
( )Wlep ( )Wlep ( , ,  )toplep tophad ttbar ( )Wlep ( , , )Whad blep bhad( , ,  )toplep tophad ttbar



Reconstruction 
of Particle 
Properties
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• X-axis: predicted values of network 

• Y-axis: true values of target 
observables 

• Properties of hadronic top quark, 
leptonic b-quark and leptonic W-
boson are shown 

• B-tagging information included



Performance of the  - ReconstructionpT
• Ratio of reconstructed and true transverse 

momentum of hadronically decaying top quark 

• Classical reconstruction for small-R jets: 

• Select 6 leading jets and combine 3 of them. 
Combination with closest mass to the actual top 
quark mass is selected 

• Classical reconstruction for large-R jets: 

• Select „2-jet-like“ events with   

• Softdropmass: 110 GeV < SDM < 210 GeV 

• Efficiency ~30% 

• Small-R and large-R reconstruction algorithms suffer 
from efficiency losses due to additional cuts 

• Machine-Learning model efficiency outperforms 
classical reconstruction with small-R and large-R jets

τ32 < 0.54
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Performance of the  - ReconstructionpT
For Different Event Topologies

• Low  (< 350 GeV): 

• Classical reconstruction methods have 
problems due to non-boosted decay 
topology 

• Medium  (350 GeV - 650 GeV): 

• Better description of physics with 
classical methods due to more boosted 
topology 

• High  (> 650 GeV): 

• Large-R reconstruction very good due to 
highly boosted topology  

• Large-R jets with efficiency of (only) 
~40%

pT

pT

pT
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Alternative Network Architecture - Interpretability
• Goal: Try to understand the reconstruction process of the model 

• Idea: Assign a weight to each mini-jet (importance for reconstruction) 

• Input: 4-vector of each mini-jet 

• Penultimate layer: Dense layer with same number of nodes as 
number of mini-jets 

• Every mini-jet gets a weight which corresponds to its importance of 
the reconstruction 

• Last layer: Custom layer with multiplication of weights and input 

• Output: 4-vector of target particle (top-quark) 

• Custom layer:  
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Summary & Outlook
• We have studied a new reconstruction methodology for collider events using mini-jets and a deep neural network  

• Mini-Jets 

• Anti-kt jets with radius of R=0.1 

• Goal: Preserve physics of hard interaction, as well as hard emissions in the parton shower 

• Reasonable multiplicity of <n> = 15 in semi-leptonic ttbar events at  TeV 

• Mini-Jets are input to a ML-based reconstruction of target observables 

• W/Z-boson, top-quark, Higgs-boson quantities 

• ML-based reconstruction outperforms classical reconstruction algorithms over a large kinematic range 

• Top-quark, W-boson and b-quark properties were studied 

• Algorithm can handle different event topologies at different scales in a single algorithm: e.g., resolved and boosted top-
quarks 

• My work opens the path to state-of-the-art and automatized reconstruction of collider events, and can similarly also be 
applied in other research fields 

• Paper in preparation (Britzger, Kluth, Kogler, Murnauer)

s = 13
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Backup
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Results
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Challenging Events
• Peak position of ML reco slightly 

shifted towards < 1 

• Few events with very bad 
reconstruction 

• Low momentum decaying top 
quark is predicted as a high 
momentum top quark:  

•   

• Other mini-jets with high momentum 
are present, coming potentially from 
leptonic top quark or final state 
radiation

predicted
true

= 𝒪(100) ≫ 1
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B-tagging

• Small and large R jets are b-tagged via ghost-matching of B-meson or B-
baryon 

• Distance of  to the next b-tagged classical R = 0.4 jet is given as an extra 
feature of the mini-jets 

• DNN learns from distance which and how many mini-jets are used for 
reconstructing a b-quark

ΔR
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Architecture of the Neural Network

• Current research is dominated by GNNs (Graph Neural Networks) 

• We have tried, but didn’t see improvements 

• Possible explanation: enough parameters for DNN to learn graph structure 
of data 

• We wanted a proof of concept: flexibel model which is capable of regressing 
many target observables at once ~ 30 

• Want to test other architectures in the future 

• PELICAN, Lorentz-Equivariant Transformer, …
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Implying Physical Constraints
• Goal: Reduce number of trainable parameters of the 

neural network 

• Model could learn features that are misleading  

• Model with huge number of weights is hard to 
interpret  

• Reduce computational effort 

• Benefits of physical constraints: 

• Guide the model while learning (respecting 
fundamental laws of physics) 

• Simplify the complexity of the model 

• Results: 

• Used mass of top quark as a constraint 

• Reduced number of parameters by a factor of 10 with 
comparable results to the initial model 
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