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Introduction

At hadron collider, like the LHC, a critical task is
the reconstruction of intermediate resonances
from Higgs-, W- or Z-bosons, or from a top quark Wt W waggee ses ™y
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Decays into partons (hadronic decays) are
particularly difficult (but also leptonic decays are
challenging when neutrinos are involved)

Due to color confinement, partons cannot be
observed directly in experiment

Instead, they form jets of particles

e

Jet algorithms are applied as a proxy for a single 3’3‘{}\‘ CERNCourier, B. Nachman
quark, or to reconstruct an intermediate resonance b,}’%;&,
directly (H, W, Z, t) What we measure

How we reconstruct



Jet Reconstruction

Many different approaches for jet-analysis

Most commonly used: Recursive clustering
algorithms

Quantity to describe the size of the jets
AR =/ (Ag) + (An)?

Mini jet radius

1
Typical values at the LHC.:
e Large-R jets - R=0.8 - t: =
e Small-R jets - R=0.4 E 7'
New approach: \V

e Mini-Jets - R=0.1

e |dea: parton-jet duality for sufficiently hard
partons from matrix element or hard radiation in
Parton shower, but less sensitive to soft radiation

e Challenge: reconstruct H, W, Z-bosons or tops
quarks from mini-jets

Small jet radius

UE & PU

Jets at hadron colliders (2); Gavin Salam

Large jet radius




Mini-Jdets

e |dea of jet algorithms in common LHC analyses:

* Define a suitable jet algorithm and size (R=0.4, 0.8,
etc.)

e Assumption: All information of the hard process is
contained in the selected jets and (isolated) leptons

e Limitations through different event topologies and
hard radiation

e |dea of mini-jets:

 Use many very small jets and collect all information

e Capture details of hard radiation

e Sensible jet multiplicity of <n> ~15

e But: Difficult to handle combinatorics to reconstruct
underlying hard physics

— Solution: Let a neural network handle the
excessive information and high combinatorics




Underlying Physics and Data

e Pair of top quarks, produced in proton-proton
collisions, decays into two W-bosons and two bottom

quarks

e Centre of mass energy: 13 TeV

 \W-bosons decay semi leptonically !
e | eptonic W-boson — lepton and neutrino
e Hadronic W-boson — quark and anti-quark \
e Monte Carlo Simulation: g

e Particle-level analysis
e Anti-kt algorithm (different R-values)

e ME, parton-shower and hadronization from Pythia
8.3

Wt

W=
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Neural Network Architecture

Jet Features:
« Mini-jets with 9 features (p, 7, b, Px> Pys P75 E, m, b-tag)
Global Features (Lepton and missing energy):

» 3 final-state lepton features (p, 17, @)

» 2 Missing features (p,, p,)

Core layer:
 Multiple dense layers with all relevant information of the event

Output:

e Extracting information for a specific resonance

Size of network O(10°) parameters

Jet Features

Edge Features Global Features

Pooling | Concatenation

Dense layer



Training the Model

e Start with training one output particle
e Easiest particle for the model in this case: W-boson decaying leptonically
e Get to more difficult particles step by step
e Use weights from leptonic W-boson to train top quarks and the invariant mass of top quark pair

e Use weights from these two models to train bottom quarks and hadronic W-boson

Jet Features Edge Features Global Features Jet Features Edge Features Global Features Jet Features Edge Features Global Features

Pooling | Concatenation Pooling | Concatenation Pooling | Concatenation

Dense layer

Dense layer Dense layer

Weight sharing Weight sharing Weight sharing

Dense

(tOP s tOPyaq» tDar ) Wiep)  (€0Dp, tODyaq, ttbar) (W oy, bieps byag)




Reconstruction
of Particle
Properties

X-axis: predicted values of network

Y-axis: true values of target
observables

Properties of hadronic top quark,
leptonic b-quark and leptonic W-
boson are shown

B-tagging information included
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Performance of the p,. - Reconstruction

Ratio of reconstructed and true transverse
momentum of hadronically decaying top quark

Classical reconstruction for small-R jets:

e Select 6 leading jets and combine 3 of them.
Combination with closest mass to the actual top

quark mass is selected

Classical reconstruction for large-R jets:

o Select ,2-jet-like” events with 75, < 0.54
e Softdropmass: 110 GeV < SDM < 210 GeV

o Efficiency ~30%

Small-R and large-R reconstruction algorithms suffer
from efficiency losses due to additional cuts

Machine-Learning model efficiency outperforms
classical reconstruction with small-R and large-R jets

# Events
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Reconstruction of pr (tophaqg)
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Low pt (<350 GeV)

[ Mmni-Jets (MLreco
17500 1 J Smal-R Jets (x* - fit)

Large-R Jets (T &S50Dmass)

Performance of the p;. - Reconstruction  * |

For Different Event Topologies e ‘ L
- A
e Low ps (<350 GeV): T

Reco pt/ True pt
Medium pt (350-650 GeV)

e Classical reconstruction methods have ‘ ——
problems due to non-boosted decay J ot s 11
topology

Large-R kets (To&SDmass)

e Medium p; (350 GeV - 650 GeV): I

* Better description of physics with 1]
classical methods due to more boosted | L

p g y ’ 000 025 050 075 100 125 150 175 200
Reco pt/ True pt

High pt (>650 GeV)

e High p (> 650 GeV): | 5 i jets (Mreco

Smal-R Jets (x* - nt)

[ LargeR ets (T &SDmass)

* Large-R reconstruction very good due to
highly boosted topology

e Large-R jets with efficiency of (only) ‘
~4OO/0 5000 .

11 Y |j:E|(_w



Alternative Network Architecture - Interpretability

 Goal: Try to understand the reconstruction process of the model ;.

e |dea: Assign a weight to each mini-jet (importance for reconstruction)

Input: 4-vector of each mini-jet

Penultimate layer: Dense layer with same number of nodes as
number of mini-jets

Every mini-jet gets a weight which corresponds to its importance of o
the reconstruction

Last layer: Custom layer with multiplication of weights and input .
Output: 4-vector of target particle (top-quark) —2-
Custom layer: .

( Einput

input

D, 25 Dy
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Weights for each mini-jet in tt-decay

o
o

t

I 1.0
- 0.8

o
(@)
Weight Values

o
N

0.2

0.0



Summary & Outlook

 \We have studied a new reconstruction methodology for collider events using mini-jets and a deep neural network
e Mini-Jets
e Anti-kt jets with radius of R=0.1

 Goal: Preserve physics of hard interaction, as well as hard emissions in the parton shower

o Reasonable multiplicity of <n> = 15 in semi-leptonic ttbar events at \/E = 13 TeV

 Mini-Jets are input to a ML-based reconstruction of target observables
e W/Z-boson, top-quark, Higgs-boson quantities

 ML-based reconstruction outperforms classical reconstruction algorithms over a large kinematic range
* Top-quark, W-boson and b-quark properties were studied

e Algorithm can handle different event topologies at different scales in a single algorithm: e.g., resolved and boosted top-
quarks

My work opens the path to state-of-the-art and automatized reconstruction of collider events, and can similarly also be
applied in other research fields

* Paper in preparation (Britzger, Kluth, Kogler, Murnauer)
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Results

Performances of different jet algorithms

Jet Sizes Mean Value z | Standard Deviation o | Efficiency ¢
ML-Reco 1.0340 0.4112 100 %
X° 0.7709 0.4819 74.14 %
Jet-tagging 1.0065 0.2247 21.42 %

Performance of different jet sizes for various topologies
Jets Low pr Medium pr High pr
x o € x o € Z o €
ML-Reco 1.1138 | 0.6604 | 100% | 0.9960 | 0.1175 | 100% | 0.9753 | 0.0792 | 100%
e 1.0035 | 0.5461 | 77.61% | 0.7408 | 0.3440 | 76.01% | 0.4016 | 0.3187 | 65.48%
Jet-tagging || 1.2642 | 0.9690 | 2.47% | 1.0012 | 0.0941 | 28.72% | 0.9873 | 0.0904 | 38.28%
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Challenging Events

e Peak position of ML reco slightly pp > tE > bbGlv, VS = 13TeV Antickr, R = 0.1, pr = 5GeV
shifted towards < 1 > o .

e Few events with very bad 2- o b VS 120
reconstruction .

- 100

e Low momentum decaying top ©
quark is predicted as a high -
momentum top quark: -

- 80

Azimuth ¢
o

- 60

, predicted _ 50100y > 1 2 .
trrue Py .
e Other mini-jets with high momentum N ° & ”
are present, coming potentially from S 5 O . i , )
leptonic top quark or final state Rapidity 1

radiation

16

Jet pr



B-tagging

e Small and large R jets are b-tagged via ghost-matching of B-meson or B-
baryon

e Distance of AR to the next b-tagged classical R = 0.4 jet is given as an extra
feature of the mini-jets

e DNN learns from distance which and how many mini-jets are used for
reconstructing a b-quark

17



Architecture of the Neural Network

e Current research is dominated by GNNs (Graph Neural Networks)
e \We have tried, but didn't see improvements

 Possible explanation: enough parameters for DNN to learn graph structure
of data

 \We wanted a proof of concept: flexibel model which is capable of regressing
many target observables at once ~ 30

e \Want to test other architectures in the future

e PELICAN, Lorentz-Equivariant Transformer, ...

18



neural network

* Model could learn features that are misleading

 Model with huge number of weights is hard to

interpret
e Reduce computational effort

* Benefits of physical constraints:

* Guide the model while learning (respecting

fundamental laws of physics)

o Simplify the complexity of the model

e Results:

e Used mass of top quark as a constraint

# Events

Implying Physical Constraints

e Goal: Reduce number of trainable parameters of the

Reconstruction of pr (tophaqg)

100000 A
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 Reduced number of parameters by a factor of 10 with

comparable results to the initial model
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Reconstructed pr/ True pr




