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The standard model of particle physics

o Below a scale of 1071 m the matter is not continuously distributed,
but discrete, it consists of particles.

o There are the following elementary particles in the so-called standard
model of the strong and electroweak interactions:
Standard Model of Elementary Particles
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The standard model predicts the
outcome of experiments at particle
accelerators with impressive
precision.



Topology of a pp collision event
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Particles which can be produced in a pp collision
Leptonen

o Neutrinos: stable, but only weakly charged. = No interaction leading
to a measurable electronic signal in the detector components.

o Electrons: stable, electrically charged. = Electronic signals in the
detector components.

o Muons: unstable, but ultrarelativistic, hence so longlived in the
laboratory system that they do not decay in the detector; electrically
charged. = Electronic signals in the detector components.

o 7 leptons: unstable. = Have to be detected via their decay products.



Topology of a pp collision event

Further final state particles
Hadrons

o In the pp collision quarks and gluons are formed. Due to the quark
confinement, we do not see quarks and gluons in the detector, by
so-called “hadron jets" which are created from the initial quarks and
gluons.

o Special role of two types of quarks:

b quarks build longlived b hadrons which makes it possible to identify
b quark jets.

t quarks are so shortlived that they cannot build hadron. They can
be identified by the decay t — Wb.

o Jets contain mainly the lightes mesons, namely ©t, 7, mo which are
quasistable due to the large Lorentz boost.

Photons

Photons are stable. They are electrically neutral, but can create
electromagnetic showers in the detector material which can be detected.



Interaction of particles with matter




Interaction of charged particles with matter

Two effects in the passage of charged particles through matter:
o Energy loss.
o Deflection from the original trajectory.
Processes causing energy loss and deflection
o Inelastic scattering off atomic electrons in the traversed material.
o Elastic scattering off the nuclei of the traversed material.
o Emission of Cerenkov radiation.
o Nuclear reactions.
o Bremsstrahlung.

The radiation field of an accelerated charge is proportional to its
acceleration acparge- The energy of the radiation is proportional to \E|2

o . 2 .
which is proportional to a?hwge = (£)" # Hence bremsstrahlung is only

important for electrons, but not for heavy charged particles.



Interaction of heavy charged particles with matter

o Heavy charged particles: u*, 7&, p, p, a particles, light nuclei.

o Dominant processes for heavy charged particles:

o Inelastic scattering off atomic electrons of the traversed material.
e Elastic scattering off the nuclei of the material.



Inelastic scattering off atomic electrons

Semiclassical trea;cment
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Momentum transferred to the electron:
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Inelastic scattering off atomic electrons

Energy obtained by the electron:
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N.: Electron number density in the material.

= Energy loss for electrons at distance between b and b+ db from the
heavy particle in a thin layer dx:
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Inelastic scattering off atomic electrons

Energy loss of the heavy charged particle:
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0 byun can be computed from the largest possible energy transfer to the
electron:
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0O bynaz Can be computed from the smallest allowed energy transfer
following from the quantization of the electron’s binding energy:
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= Bohr's approximation of the Bethe-Bloch formula:
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Graphical illustration, minimal ionizing particles

100
o First rapid decrease of the

energy loss with increasing
energy of the charged particle.
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o After a minimum weak, only
logarthmic increase of the energy
loss with increasing energy of

L the heavy charged particle.
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o Particles with an energy for
which the energy loss is
10 L LU |G O L) minimum are called minimum
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Scaling of the Bethe-Block formula

Let us consider two particles with different mass and charge traversing the
same material.

Epin = (v —1)Mc?, ie. = (Eﬂ"), therefore
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Multiple scattering

Heavy charged Scattering off a single nucleus:
particle (charge: ze)
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The exact treatment gives
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where the term under the square root happens to be equal to the
radiation length Xy of the material which we will introduce later.
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Energy loss of electrons (and positrons)

me IS SO small that the acceleration that an electron experiences in
collisions with the atomic nuclei becomes so large that bremsquanta can
be emitted.
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collision bremsstrahlung

% Collision denotes the energy loss due to excitation and ionization of
atoms. The corresponding formula is similar to the Bethe-Bloch
formula, but differs in details because

e the electrons are deflected when scattering off atomic electrons,
e and the impinging electron is indistinguashable from the atomic
electron.

dE

Q at—
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denotes the energy loss via bremsstrahlung.
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Energy loss of electrons due to bremsstrahlung

o Radiation field of an accelerated charge & aradung-

2
o Energy of the radiation o |field|? oc azharge = (ni) o< 5.

I.e. unlike for heavy charged particles we cannot neglect
bremsstrahlung of electrons.

- =N- Ee ' q)radiation

bremsstrahlung

N: Number of atom per volume.
E.. Electron energy.
D,.odiation: Material dependent factor.
= Linear increase of the energy loss via bremsstrahlung with increasing
electron energy.
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Critical energy and radiation length
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