How to measure the Wboson mass (very precisely !)

HC seminar

11.11.2024

Simon Grewe

Run Number: 186049, Event Number: 22

Date: 2011-07-21 00:33:33 CES

Measurement of the W-boson mass and width with the ATLAS detector using proton-proton collisions at \sqrt{s} = 7 TeV arxiv:2403.15085

Why measure the W mass

$$m_W^2 = \frac{M_Z^2}{2} (1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha 1 - \Delta r}}{G_F M_Z^2}})$$

- Δ r: Loop corrections depending on m_{top} and m_{higgs} or potential BSM correction
- A very precise measurement is a powerful probe of the SM

How to measure the W-boson mass

- W decays:
 - Hardonic decays: very "messy", low resolution (jet energy resolution~20% @ 30 GeV), pile-up
 - Leptonic decays: high resolution for both electrons and muons (e.g 1.6% mass resolution for the Z peak with muons) but neutrino can't be measured by ATLAS

We can't measure the W boson mass directly !

How to measure the W boson mass

- The lepton transverse momentum and transvers mass are observables sensitive to the W mass
- The two observables are sensitive to different uncertainties/ modelling effects,
- In general: we need an excellent understanding of our detector and a precise knowledge of the modelling of our physics processes

$$m_T = \sqrt{2p_T^l p_T^{miss} (1 - \cos \Delta \phi)}$$

Template fit

• Build different templates:

 \odot Simulate different mass hypothesis of the W boson

 \odot Check which templeate fits the data best

7

Analysis strategy

- Use the low μ ATLAS datatset @ 7 TeV recorded in 2007
 - Low pileup <µ>=9 is crucial to measure the measure the hadronic recoil precisely (% level resolution)
 - \circ ~14 M W-> lv candidates
 - $_{\odot}$ Split in 14 categories(charge, flavour, η)
- Select 1 lepton events:
 - $\circ p_T^{l}$ >30 GeV $\circ p_T^{miss}$ >30 GeV $\circ u_T$ <30GeV (recoil) $\circ m_T$ >60 GeV

$$m_T = \sqrt{2p_T^l p_T^{miss} (1 - \cos \Delta \phi)}$$

HL-LHC tt̄ event in ATLAS ITK at <µ>=200

Simulated tt event at $<\mu>=200$

W-> $\mu \nu$ candidate at < μ > =9

Recoil modelling

The recoil/ W p_T is hard to model (by parton shower)

 \circ Non-perturbative QCD

 \circ Many scales

- Use Z samples to validate the recoil modelling and tune parameters to ensure a precise modelling
- PYTHIA AZN tune describes the W $\ensuremath{p_{\text{T}}}$ very well

Excursion: Muon momentum calibration

 The Z boson is a very powerful "standard candle" allowing to calibration leptons to the per mill level

 \odot Similar the recoil can be calibrated by the considering the balance between $p_{T}{}^{Z}$ and u_{T}

 $p_{T}^{Cor,Det} = \frac{p_{T}^{MC,Det} + s_{0}^{Det} + s_{1}^{Det}p_{T}^{MC,Det}}{1 + g_{0}\Delta r_{0}^{Det}\frac{1}{p_{T}^{MC,Det}} + g_{1}\Delta r_{1}^{Det} + g_{2}\Delta r_{2}^{Det}p_{T}^{MC,Det}}$ $s_{i}(\eta,\phi): \text{Scale corrections}$ $\Delta r_{i}(\eta,\phi): \text{Momentum smearing}$ $g_{i}: \text{random normally distributed variable}$

Profile likelihood fit

- Move from χ^2 fit to profile likelihood fit $_{\odot}$ Allows for (in situ) constrain experimental & modelling systematic uncertainties
- Maximize the likelihood function describing how compatible the data is with a hypothesis

Measured data

Nuisances parameter/systematic uncertainty

Uncertainties

- Experimental uncertainties in the calibration of the recoil and lepton momentum
- Theorie uncertainties from the W modelling

 PDF
 - Parton-shower (Recoil)

0 ...

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^ℓ	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

PDF uncertainties

• Due to difference between the u and d and valance and see quarks in different PDF sets yield to different rapidity distribution and difference in the acceptance in different regions

Results

ATLAS ATLAS \sqrt{s} = 7 TeV, 4.6/4.1 fb⁻¹, *e*-/ μ -channel, single- and multi-fits \sqrt{s} = 7 TeV, 4.6/4.1 fb⁻¹, *e*-/ μ -channel, single- and multi-fits $--- p_{T}^{\ell}$, total unc. m_T, total unc. m_W unc. 80434 +41 μ, |η|<0.8, q=-1 μ, |η|<0.8, q=-1 80302 +40 μ, |η|<0.8, q=+1 μ, |η|<0.8, q=+1 80370 +43 μ, 0.8<η|<1.4, q=-1 μ, 0.8<|η|<1.4, q=-1 80342 +40 μ, 0.8<η|<1.4, q=+1 μ , 0.8< η <1.4, q=+1 80376 +49 μ, 1.4<|η|<2.0, q=−1 μ, 1.4<η|<2.0, q=-1 80478 +49 μ, 1.4<|η|<2.0, q=+1| μ, 1.4<η|<2.0, q=+1 80328 +129 μ, 2.0<η|<2.4, q=-1 μ, 2.0<η|<2.4, q=-1 80360 +120 μ , 2.0< η <2.4, q=+1 *μ*, 2.0<|η|<2.4, q=+1 80342 +46 *e*, |η|<0.6, q=−1 *e*, |η|<0.6, q=−1 80291 +44 -43 *e*, |η|<0.6, q=+1 *e*, |η|<0.6, q=+1 *e*, 0.6<|η|<1.2, q=−1 80310 +45 *e*, 0.6<|η|<1.2, q=−1 80379 +43 *e*, 0.6<|η|<1.2, q=+1 *e*, 0.6<|η|<1.2, q=+1 80378 +58 *e*, 1.8<|η|<2.4, q=-1 *e*, 1.8<|η|<2.4, q=-1 80351 +50 -51 *e*, 1.8<|η|<2.4, q=+1 *e*, 1.8<|η|<2.4, q=+1 80362 +16 Combination H Combination 80200 80200 80400 80600 80400

80364 +63 80376 +59 80408 +59 80373 +52 -50 80342 +59 80439 +60 80319 +133 80346 +128 80463 +67 80362 +61 -59 80312 +59 80407 +56 80401 +73 80388 +61 80395 +24 80600

 m_{W} [MeV]

 m_{W} [MeV]

 m_w

unc.

W boson width measurement

• The same procedure can be used to measure the W boson width

Conclusion

- W boson mass was measured with very high precision @ LHC
 - Dominated by lepton pT measurement
- m_W = 80366.5 ± 9.8 (stat.) ± 12.5 (syst.) MeV = 80366.5 ± 15.9 MeV
- Measurment is compatible with SM predictions and global fits

