Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the $bb\tau$ + τ - final state in proton-proton collisions at \sqrt{s} = 13 TeV with the ATLAS detector

Probing the Higgs self-coupling

Physics at LHC - Seminar

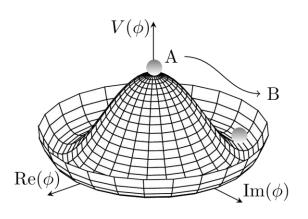
Maximilian Griese

16.12.2024

Outline

- 1. Introduction and Motivation
- 2. ATLAS Detector
- 3. Signal processes, relevant production modes and final states
- 4. Data Acquisition
- 5. Event Selection
- 6. Boosted Decision Trees
- 7. Results
- 8. Uncertainties
- 9. Conclusion

Introduction

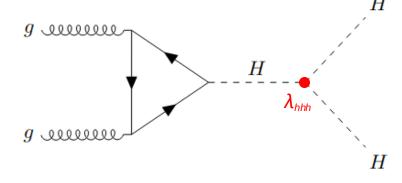

- Higgs field potential as described in the Standard Model is determined by the relation

$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4 \quad \mu^2 < 0, \lambda > 0$$

- This leads to the known "mexican hat" potential after electroweak symmetry breaking
- An excitation *h* from the minimum of this potential can be described with

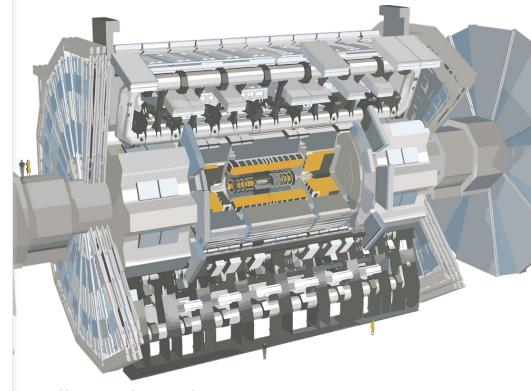
$$V(h) = m_h^2 h^2 + \lambda_{hhh} v h^3 + \lambda_{hhhh} h^4$$

- m_h : Higgs-boson mass, v: vacuum expectation value (VEV), λ_{hhh} : trilinear Higgs coupling, λ_{hhhh} : quartic higgs-coupling
- So far, we only know about the *minimum* of the Higgs potential and about its interactions with fermions and gauge bosons



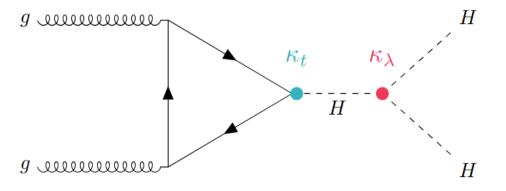
Why measure the Higgs Self-Coupling?

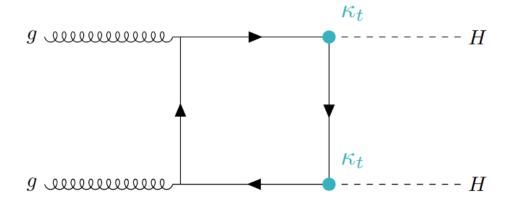
- More knowledge about the shape of the Higgs potential, details of electroweak symmetry breaking
- Standard Model tests
- Probing vacuum stability: The minimum of the Higgs potential might be metastable
- Additional Higgs Bosons
- Influence of higher dimensional (EFT) operators


Introduction

- The interactions with itself can be probed by analysis of processes that produce di-Higgs
- For this it is useful to define a coupling modifier $\kappa_{\lambda} = \lambda_{hhh} / \lambda_{hhh}^{SM}$
- The strength of the di-Higgs production will also depend on the coupling modifiers $\kappa_V = \lambda_{vvh} / \lambda_{vvh}^{SM}$, $\kappa_{2V} = \lambda_{vvhh} / \lambda_{vvhh}^{SM}$, $\kappa_t = \lambda_{tth} / \lambda_{tth}^{SM}$

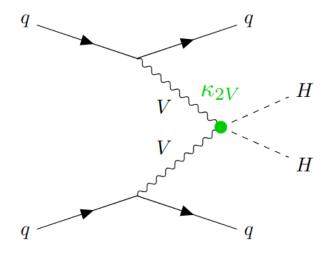
ATLAS

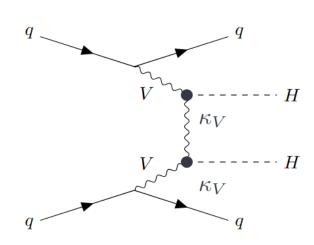

- multipurpose detector with cylindrical geometry and nearly 4π solid angle coverage
- Inner Detector: Tracks particles using silicon pixel, microstrip, and transition radiation detectors
- Electromagnetic calorimeter: Lead/LAr with high granularity, LAr for endcap/forward regions
- Hadronic calorimeter: Steel/scintillator for central region, LAr for endcap/forward regions
- Muon Spectrometer: Precision tracking and trigger chambers surround the calorimeters
- Hardware-based first-level trigger reduces event rate to <100 kHz
- Software-based second-level trigger reduces rate to ~1kHz

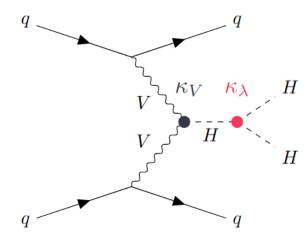


https://atlas.cern/Discover/Detector

Production modes


- Di-Higgs production via gluongluon Fusion (ggF)
- Dominant production mode with $\sigma_{\rm ggF}^{\rm SM} = 31.1^{+2.1}_{-7.2} \, {\rm fb}$ and ${\rm m_H} = 125 \, {\rm GeV}$
- For comparison: single Higgs production ~ 40 pb
- For self-coupling the first process is what we would like to measure
- Heavy negative interference between the two makes the analysis difficult
- κ_t and κ_λ contribute to the diagrams

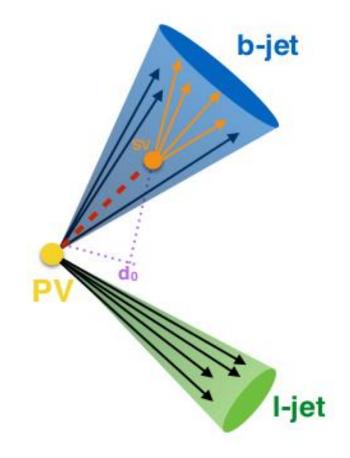




Production modes

- Di-Higgs production
 via Vector Boson Fusion
 (VBF)
- Second most dominant production mode with $\sigma_{\mathrm{VBF}}^{\mathrm{SM}} = 1.73 \pm 0.04 \ \mathrm{fb}$
- κ_V , κ_{2V} and κ_{λ} contribute to the diagrams
- All of these have two additional light quark jets

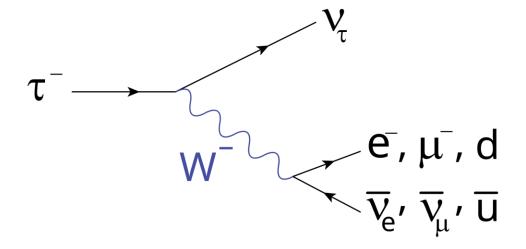
Decay modes


- The Higgs bosons produced will decay independently
- Among the most probable on-shell Higgs decays are bb and τ⁺τ⁻
- bbbb and bbWW can lead to very messy multi jet backgrounds
- This makes the bb τ⁺τ⁻ final state a very interesting candidate for di-Higgs analysis as it is relatively common and "cleaner" than other candidates

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

https://inspirehep.net/files/a34811e0b9462ca5900081ffe6c92bdb

Decay of products


- The b quarks in the final state will (mostly) result in two b-jets, that can be reconstructed and identified using btagging algorithms
- The τ leptons will decay hadronically around 65% of the time, while decaying leptonically otherwise

https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging

Decay of products

- τ leptons will decay hadronically into charged pions that can be detected as narrow jets with low track multiplicity
- Leptonic τ decay results in e/μ and missing p_T from neutrinos

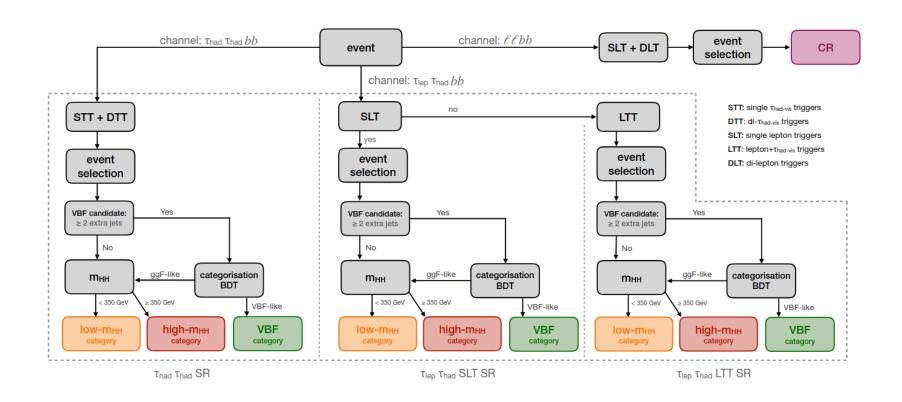
https://en.wikipedia.org/wiki/Tau_(particle)

Background processes

- tt pair production
- multi-jet production
- Z/W+jets
- diboson
- single Higgs boson

Data and simulated samples

- Data used from LHC Run 2
- \sqrt{s} = 13 TeV, int. luminosity 140.1 ± 1.2 fb⁻¹
- Various MC generators are used for simulating the different processes
- For correctly estimating fake $\tau_{\text{had-vis}}$ signatures a combination of real data and simulation is used

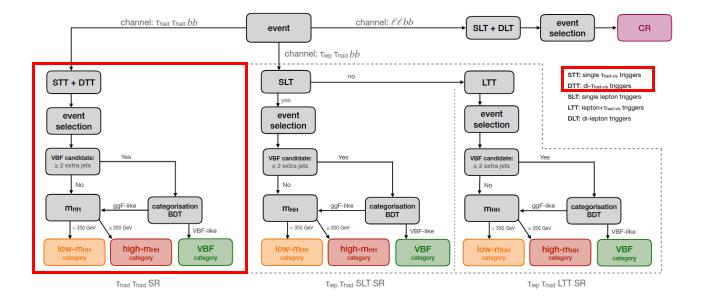

Generators used for simulation

Process	ME generator	ME QCD order	PDF set	PS and hadronisation	UE model tune	Cross-section order
Signal						
$gg \to HH (ggF)$	Powheg Box v2 [46]	NLO	PDF4LHC15 _{NLO} [58]	Рутніа 8.244 [48]	A14 [49]	NNLO FTApprox
$qq \rightarrow qqHH \text{ (VBF)}$	MadGraph5_aMC@NLO 2.7.3 [60]	LO	NNPDF3.0nlo [47]	Рутніа 8.244	A14	$N^3LO(QCD)$
Top-quark						
$t\bar{t}$	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14	NNLO+NNLL
t-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14	NLO
s-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14	NLO
Wt	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14	NLO
$t\bar{t}Z$	Sherpa 2.2.1 [51]	NLO	NNPDF3.0nnlo	Sherpa 2.2.1	_	NLO
$t\bar{t}W$	Sherpa 2.2.8	NLO	NNPDF3.0nnlo	Sherpa 2.2.8	-	NLO
Vector boson + jets						
·		$NLO(\leq 2 \text{ jets})$				
W/Z+jets	Sherpa 2.2.11	LO(3, 4 jets)	NNPDF3.0nnlo	Sherpa 2.2.11	-	NNLO
Diboson						
		$NLO(\leq 1 \text{ jets})$				
WW, WZ, ZZ	Sherpa 2.2.1	LO(2, 3 jets)	NNPDF3.0nnlo	Sherpa 2.2.1	-	NLO
Single Higgs boson						
ggF	Powheg Box v2	NNLO	PDF4LHC15nnlo	Рутніа 8.212	AZNLO [59]	N ³ LO(QCD)+NLO(EW)
VBF	Powheg Box v2	NLO	PDF4LHC15 _{NLO}	Рутніа 8.212	AZNLO	NNLO(QCD)+NLO(EW)
$qq \rightarrow WH$	Powheg Box v2	NLO	PDF4LHC15 _{NLO}	Рутніа 8.212	AZNLO	NNLO(QCD)+NLO(EW)
$qq \rightarrow ZH$	Powheg Box v2	NLO	PDF4LHC15 _{NLO}	Рутніа 8.212	AZNLO	NNLO(QCD)+NLO(EW) [†]
$gg \rightarrow ZH$	Powheg Box v2	NLO	PDF4LHC15 _{NLO}	Рутніа 8.212	AZNLO	NLO+NLL
tīH	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	A14	NLO(QCD)+NLO(EW)

Signal Regions in the Analysis

- 3 Signal Regions (SR)
 - \circ First Region $\tau_{had}\tau_{had}$ bb
 - \circ 2 Regions for $\tau_{lep}\tau_{had}$ bb (depending on different triggers)
- 1 Control Region (CR) for validating background models
 - $\circ \ \tau_{lep}\tau_{lep} \ bb$

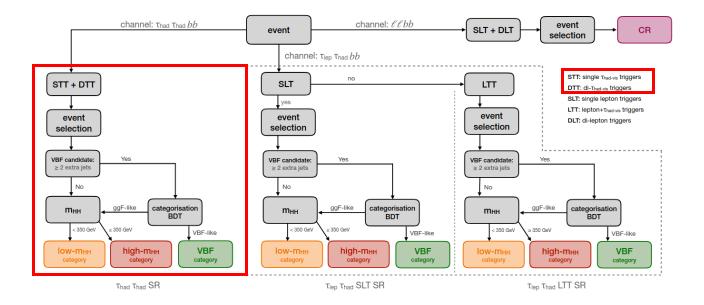
Signal Regions in the Analysis



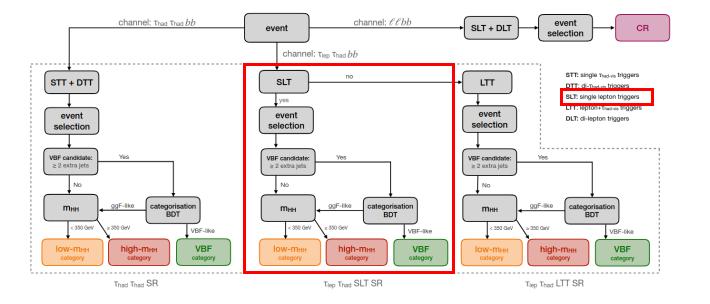
Signal Regions in the Analysis

- General requirements for all SRs
 - \circ m_{$\tau\tau$} > 60 GeV
 - \circ Events must contain two b-tagged jets with $|\eta|$ < 2.5
 - \circ b-jets have to satisfy p_T > 45 GeV (20 GeV)

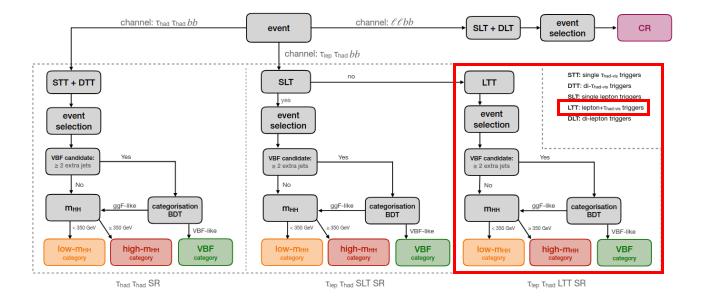
bb $\tau_{had}\tau_{had}$


- Selection using combined "single- $\tau_{had\text{-}vis}$ triggers" (STT) + "di- $\tau_{had\text{-}vis}$ triggers" (DTT)
- Two $\tau_{\text{had-vis}}$ with opposite charge are required
- No muons, electrons allowed in the final state

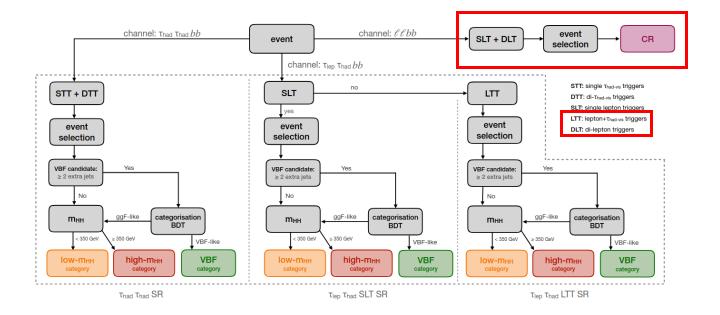
bb $\tau_{had}\tau_{had}$


- STT selection: minimum p_T has to be 100 GeV – 180 GeV (different data taking periods)
 - o There needs to be a second $τ_{had-vis}$ present with $p_T > 25 \text{ GeV}$
- DTT cuts: minimum p_T 40 GeV (leading), 30 GeV (subleading)
 - \circ One extra jet present with p_T > 80 GeV and

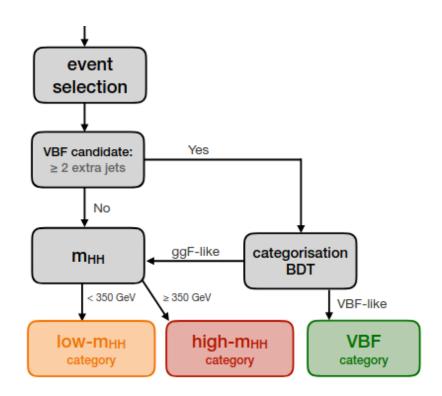
$$\begin{array}{ll} \Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 2.5 \\ \text{o T: Two extra jets with p_T > 45 GeV} \end{array}$$


bb $\tau_{lep}\tau_{had}$ (SLT)

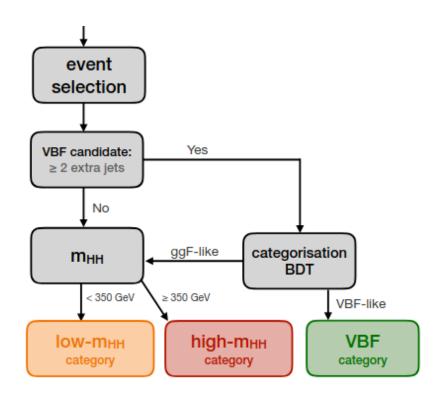
- electrons have to satisfy p_T > 25 GeV
 (27 GeV)
- muons have to satisfy p_T > 21 GeV
 (27 GeV)
- m_{bb} < 150 GeV (reject tt background)
- One $\tau_{had\text{-}vis}$ present with opposite charge to the lepton and $p_T > 20 \text{ GeV}$


bb $\tau_{lep}\tau_{had}$ (LTT)

- electrons have to satisfy $p_T > 18 \text{ GeV}$
- muons have to satisfy p_T > 15 GeV
- m_{bb} < 150 GeV (reject tt background)
- One $τ_{had-vis}$ present with with opposite charge to the lepton and $p_T > 30$ GeV


bb $\tau_{lep}\tau_{lep}$ (CR)

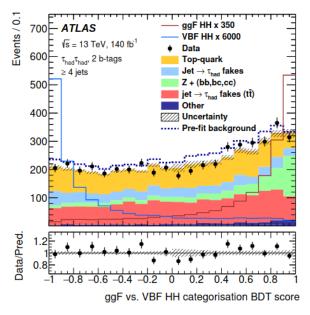
- Exactly two electrons or two muons
- 75 GeV < m_{ee} < 110 GeV
- m_{bb} < 40 GeV or m_{bb} > 210 GeV
- Leptons have to satisfy $p_T > 40 \text{ GeV}$
- Leading b-jet with $p_T > 45$ GeV

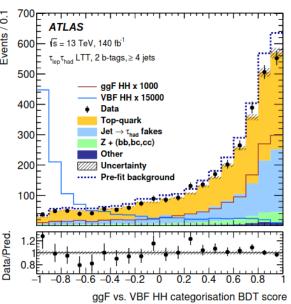

Event categorization

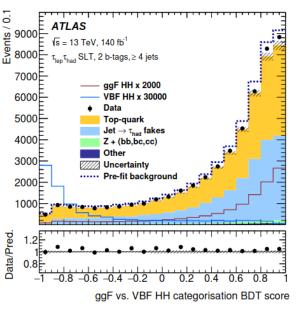
- In all of the SRs there are three different categories for events
- Events with ggF production get sorted into a low-m_{HH} (< 350 GeV) and a high-m_{HH} (> 350 GeV) category
- Events with VBF will be in a third category

Boosted Decision Trees

- Boosted Decision Trees (BDTs) are a machine learning method used for predictions on events in this analysis
- Decision trees group data in categories using binary (yes/no) questions about its input features
- BDTs use a lot of decision trees sequentially focusing training on previous mistakes
- Total score for a certain event is computed using a weighted average over all decision trees


Input features for categorization


- Every SR uses a different set of input features
- Features used are the ones offering the best distinction between ggF and VBF events


Variable	$ au_{ m had} au_{ m had}$	$ au_{\mathrm{lep}} au_{\mathrm{had}}$ SLT	$ au_{\rm lep} au_{ m had}$ LTT
m_{jj}^{VBF}	✓	✓	✓
$\Delta\eta_{jj}^{ m VBF}$	✓	✓	✓
VBF $\eta_0 \times \eta_1$	✓	✓	
$\Delta\phi_{jj}^{ m VBF}$	✓		
$\Delta R_{jj}^{\mathrm{VBF}}$		✓	✓
$\Delta R_{ au au}$	✓		
m_{HH}	✓		
f_2^a	✓		
C^a		✓	✓
$m_{ m Eff}^a$		✓	✓
f_0^c		✓	
f_0^a			✓
h_3^a			✓

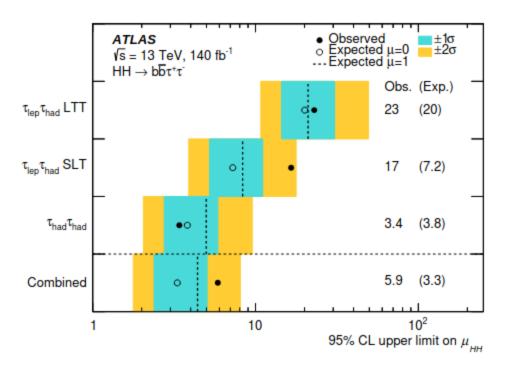
Results for categorization BDTs

- BDT scores range from –1 (most VBFlike) to 1 (most ggF-like)
- This shows BDT evaluation on the data in each SR
- BDT predictions are very close to observed scores
- Signal Processes are scaled up a lot because of their very small contributions

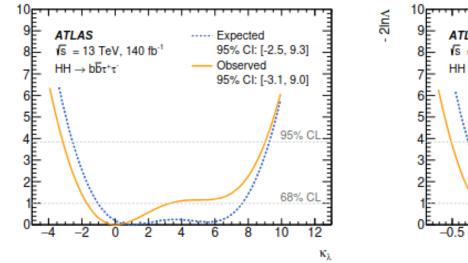
https://arxiv.org/pdf/2404.12660

HH vs background separation with BDTs

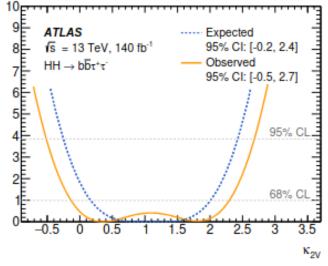
- 9 different BDTs for the 3 different categories and 3 SRs
- Input features are a combination of:
 - \circ m_{bb}, m_{$\tau\tau$}, m_{HH}, ΔR_{bb} , $\Delta R_{\tau\tau}$
 - ΔR_{bb} is excluded in the $\tau_{lep}\tau_{had}$ high-m_{HH} category
 - Both ΔR_{bb} and $\Delta R_{\tau\tau}$ are excluded in the $\tau_{lep}\tau_{had}$ VBF category
 - Transverse momenta of particles
 - More complex geometric variables, flow features


HH vs background separation with BDTs

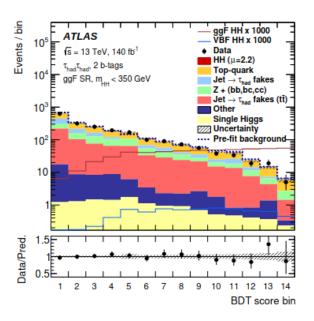
- For the ggF high-m_{HH} and the VBF categories, the signal is defined as ggF HH and VBF HH production respectively with the SM hypothesis
- For ggF low-m_{HH}, the signal is defined as ggF HH production with κ_{λ} = 10


- A global likelihood function $L(\alpha, \vartheta)$ is used, combining all the nine BDT output distributions and the $m_{\ell\ell}$ distribution of the CR
- α : Parameters of interest (POI), e.g. the signal strength parameter μ_{HH} or coupling modifiers κ_{λ} , κ_{V} , κ_{2V}
- ϑ: nuisance parameters, e.g. systematic uncertainties constrained by measurements in control regions or by theoretical predictions or certain background yields

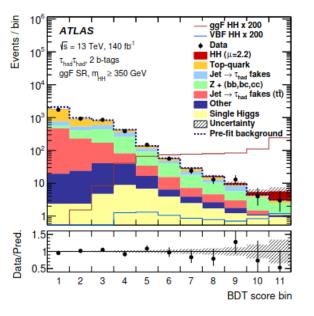
- A maximum-likelihood fit to data for the function $L(\alpha, \vartheta)$ can be performed on a set α of parameters of interest to predict the most likely values of these parameters using the given data
- Performing this likelihood fit for $L(\mu_{HH}, \vartheta)$ results in an estimate for the HH signal strength of $\mu_{HH} = 2.2 + / 1.7$ with an upper bound of 5.9 at 95% CL


- Signal strength μ_{HH} per SR
- Shown are the 95% CL upper limits for both μ_{HH} = 0 (only background) and μ_{HH} = 1 (SM prediction) hypotheses

- Different hypotheses for κ_{λ} , κ_{2V}
- Compared to "perfect" dataset ("Expected") under the SM hypothesis
- $-3.1 < \kappa_{\lambda} < 9.0$ (observed)
- $-0.5 < \kappa_{2V} < 2.7$ (observed)

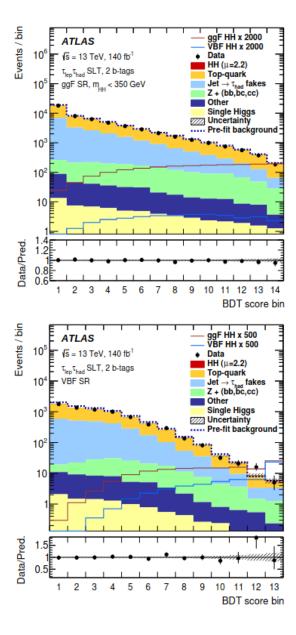

- 2InA

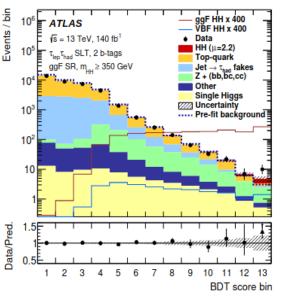




BDT results in the $\tau_{had}\tau_{had}$ SR

- This shows BDT evaluation after the likelihood fit to the data for $L(\mu_{HH}, \theta)$ in each category of the $\tau_{had}\tau_{had}$ SR
- scores range from 1 (most background-like) to 11-14 (most HH-like)
- BDT predictions are very close to observed scores
- Most HH signal in the high- m_{HH} category of $\tau_{had}\tau_{had}$ SR, very high uncertainty

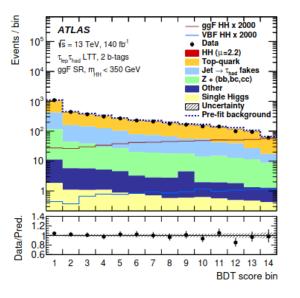


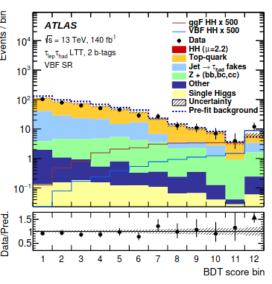


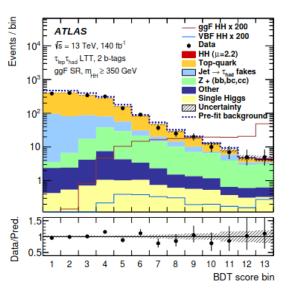
https://arxiv.org/pdf/2404.12660

BDT results in the $\tau_{lep}\tau_{had}$ SLT SR

- This shows BDT evaluation after the likelihood fit to the data for $L(\mu_{HH}, \theta)$ in each category of the $\tau_{lep}\tau_{had}$ SLT SR
- BDT scores range from 1 (most background-like) to 13-14 (most HH-like)
- BDT predictions are very close to observed scores
- Most HH signal in the high- m_{HH} category of $\tau_{lep}\tau_{had}$ SR, slight deviation






https://arxiv.org/pdf/2404.12660

BDT results in the $\tau_{lep}\tau_{had}$ LTT SR

- This shows BDT evaluation after the likelihood fit to the data for $L(\mu_{HH}, \vartheta)$ in each category of the $\tau_{lep}\tau_{had}$ LTT SR
- BDT scores range from 1 (most background-like) to 12-14 (most HH-like)
- BDT predictions are very close to observed scores
- Most HH signal in the high-m_{HH} category of $\tau_{had}\tau_{had}$ SR

https://arxiv.org/pdf/2404.12660

Uncertainties

- Big statistical uncertainty from the low number of signal events
- A lot of systematic uncertainty comes from the modeling of background processes
 - Parton showers and QCD radiation have a high theoretical modeling uncertainty
 - Especially modeling of tt (up to 10%) and Wt (up to 36%)
 - \circ Uncertainty of 100% in the normalisation of the single Higgs boson decay into two τ leptons
- Uncertainties in the coupling modifiers due to sample reweighting for different hypotheses

Conclusion

- Full Run 2 ATLAS dataset of 140 fb⁻¹ at 13 TeV was used for a search for non-resonant Higgs boson pair (HH) production in the bb $\tau+\tau$ final state
- improved sensitivity to SM HH production and anomalous couplings (κ_{λ} and κ_{2V})
- No evidence of HH signal
- 95% CL upper limit on HH signal strength μ_{HH} = 5.9 (observed)
- 95% CI for couplings $-3.1 < \kappa_{\lambda} < 9.0$ (observed), $-0.5 < \kappa_{2V} < 2.7$ (observed)

Sources

- https://cds.cern.ch/record/1482189/files/ATL-DAQ-PROC-2012-050.pdf (Tau triggers)
- https://arxiv.org/pdf/2404.12660 (original paper)
- https://arxiv.org/pdf/2004.04240 (trilinear higgs potential)
- https://arxiv.org/pdf/1107.5909 (higgs branching ratios)