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Introduction

- Higgs field potential as described in the Standard Model is determined by the relation
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- This leads to the known "mexican hat" potential after electroweak symmetry breaking

- An excitation h from the minimum of this potential can be described with

- mh: Higgs-boson mass, v: vacuum expectation value (VEV), λhhh: trilinear 

Higgs coupling, λhhhh: quartic higgs-coupling

- So far, we only know about the minimum of the Higgs potential and about 

its interactions with fermions and gauge bosons



Why measure the Higgs Self-Coupling?

- More knowledge about the shape of the Higgs potential, details of electroweak symmetry breaking

- Standard Model tests

- Probing vacuum stability: The minimum of the Higgs potential might be metastable

- Additional Higgs Bosons

- Influence of higher dimensional (EFT) operators
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Introduction

- The interactions with itself can be probed by analysis of 

processes that produce di-Higgs

- For this it is useful to define a coupling modifier κλ = λhhh / λhhh
SM

- The strength of the di-Higgs production will also depend on the 

coupling modifiers κV= λvvh / λvvh
SM, κ2V = λvvhh / λvvhh

SM,                 κt 

= λtth / λtth
SM
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λhhh



ATLAS

- multipurpose detector with cylindrical geometry and nearly 4π 
solid angle coverage

- Inner Detector: Tracks particles using silicon pixel, microstrip, and 
transition radiation detectors

- Electromagnetic calorimeter: Lead/LAr with high granularity, LAr 
for endcap/forward regions

- Hadronic calorimeter: Steel/scintillator for central region, LAr for 
endcap/forward regions

- Muon Spectrometer: Precision tracking and trigger chambers 
surround the calorimeters

- Hardware-based first-level trigger reduces event rate to <100 kHz

- Software-based second-level trigger reduces rate to ∼1 kHz
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https://atlas.cern/Discover/Detector



Production modes

- Di-Higgs production via gluon-
gluon Fusion (ggF)

- Dominant production mode with 
at √s = 13 TeV and mH = 125 GeV

- For comparison: single Higgs 
production ~ 40 pb

- For self-coupling the first process 
is what we would like to measure

- Heavy negative interference 
between the two makes the 
analysis difficult

- κt and κλ contribute to the 
diagrams
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Production modes

- Di-Higgs production 

via Vector Boson Fusion 

(VBF)

- Second most dominant 

production mode with

- κV, κ2V and κλ contribute to 

the diagrams

- All of these have two 

additional light quark jets

8



Decay modes

- The Higgs bosons produced will decay 

independently

- Among the most probable on-shell Higgs 

decays are bb and τ+τ-

- bbbb and bbWW can lead to very messy 

multi jet backgrounds

- This makes the bb τ+τ- final state a very 

interesting candidate for di-Higgs 

analysis as it is relatively common and 

"cleaner" than other candidates
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https://inspirehep.net/files/a34811e0b9462ca5900081ffe6c92bdb

https://inspirehep.net/files/a34811e0b9462ca5900081ffe6c92bdb


Decay of products

- The b quarks in the final state will 

(mostly) result in two b-jets, that can be 

reconstructed and identified using b-

tagging algorithms

- The τ leptons will decay hadronically 

around 65% of the time, while decaying 

leptonically otherwise
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https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging

https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging


Decay of products

- τ leptons will decay hadronically into 

charged pions that can be detected as 

narrow jets with low track multiplicity

- Leptonic τ decay results in e/μ and 

missing pT from neutrinos
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https://en.wikipedia.org/wiki/Tau_(particle)



Background processes

- tt pair production

- multi-jet production

- 𝑍/𝑊+jets

- diboson

- single Higgs boson
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Data and simulated samples
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- Data used from LHC Run 2 

- √𝑠 = 13 TeV, int. luminosity 140.1 ± 1.2 fb−1

- Various MC generators are used for simulating the different 

processes

- For correctly estimating fake τhad-vis signatures a combination of 

real data and simulation is used 



Generators used for simulation
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https://arxiv.org/pdf/2404.12660



Signal Regions in the Analysis
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- 3 Signal Regions (SR)

o First Region τhadτhad bb 

o 2 Regions for τlepτhad bb (depending on different triggers)

- 1 Control Region (CR) for validating background models

o τlepτlep bb



Signal Regions in the Analysis
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Signal Regions in the Analysis
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- General requirements for all SRs
o mττ > 60 GeV

o Events must contain two b-tagged jets with |η| < 2.5

o b-jets have to satisfy pT > 45 GeV (20 GeV)



bb τhadτhad 

- Selection using combined "single-τhad-vis 

triggers" (STT) + "di-τhad-vis triggers" 

(DTT) 

- Two τhad-vis with opposite charge are 

required 

- No muons, electrons allowed in the final 

state 
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bb τhadτhad 

- STT selection: minimum pT has to be 100 

GeV – 180 GeV (different data taking 

periods) 

o There needs to be a second τhad-vis present with  

pT > 25 GeV 

- DTT cuts: minimum pT 40 GeV (leading), 

30 GeV (subleading)

o One extra jet present with pT > 80 GeV and

o Or: Two extra jets with pT > 45 GeV
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bb τlepτhad (SLT)

- electrons have to satisfy pT > 25 GeV    

(27 GeV)

- muons have to satisfy pT > 21 GeV        

(27 GeV)

- mbb < 150 GeV (reject tt background)

- One τhad-vis present with opposite charge 

to the lepton and pT > 20 GeV
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bb τlepτhad (LTT)

- electrons have to satisfy pT > 18 GeV

- muons have to satisfy pT > 15 GeV

- mbb < 150 GeV (reject tt background)

- One τhad-vis present with with opposite 

charge to the lepton and pT > 30 GeV
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bb τlepτlep (CR)

- Exactly two electrons or two muons

- 75 GeV < 𝑚ℓℓ < 110 GeV

- 𝑚𝑏𝑏 < 40 GeV or 𝑚𝑏𝑏  > 210 GeV

- Leptons have to satisfy pT > 40 GeV

- Leading b-jet with pT > 45 GeV
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Event categorization

- In all of the SRs there are three different categories 

for events

- Events with ggF production get sorted into a         

low-mHH (< 350 GeV) and a high-mHH (> 350 GeV) 

category

- Events with VBF will be in a third category
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Boosted Decision Trees

- Boosted Decision Trees (BDTs) are a machine 

learning method used for predictions on events in 

this analysis 

- Decision trees group data in categories using binary 

(yes/no) questions about its input features

- BDTs use a lot of decision trees sequentially 

focusing training on previous mistakes 

- Total score for a certain event is computed using a 

weighted average over all decision trees

24



Input features for 
categorization

- Every SR uses a different set of input 

features

- Features used are the ones offering the 

best distinction between ggF and VBF 

events
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https://arxiv.org/pdf/2404.12660



Results for 
categorization BDTs

- BDT scores range from –1 (most VBF-

like) to 1 (most ggF-like)

- This shows BDT evaluation on the data 

in each SR

- BDT predictions are very close to 

observed scores

- Signal Processes are scaled up a lot 

because of their very small 

contributions
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https://arxiv.org/pdf/2404.12660



HH vs background separation with BDTs
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- 9 different BDTs for the 3 different categories and 3 SRs

- Input features are a combination of:

o mbb, mττ, mHH, ΔRbb, ΔRττ

- ΔRbb is excluded in the τlepτhad high-mHH category

- Both ΔRbb and ΔRττ are excluded in the τlepτhad VBF category

o Transverse momenta of particles

o More complex geometric variables, flow features



HH vs background separation with BDTs

28

- For the ggF high-mHH and the VBF categories, the signal is defined as    

ggF HH and VBF HH production respectively with the SM hypothesis

- For ggF low-mHH, the signal is defined as ggF HH production with κλ = 10



Results
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- A global likelihood function L(α,θ) is used, combining all the nine BDT 

output distributions and the 𝑚ℓℓ distribution of the CR

- α: Parameters of interest (POI), e.g. the signal strength parameter μHH or 

coupling modifiers κλ, κV, κ2V 

- θ: nuisance parameters, e.g. systematic uncertainties constrained by 

measurements in control regions or by theoretical predictions or certain 

background yields



Results
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- A maximum-likelihood fit to data for the function L(α,θ) can be performed 

on a set α of parameters of interest to predict the most likely values of 

these parameters using the given data

- Performing this likelihood fit for L(μHH,θ) results in an estimate for the HH 

signal strength of μHH = 2.2 +/- 1.7 with an upper bound of 5.9 at 95% CL



Results

- Signal strength μHH per SR

- Shown are the 95% CL upper 

limits for both          μHH = 0 

(only background) and μHH = 

1 (SM prediction) 

hypotheses
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Results

- Different hypotheses for 𝜅𝜆, 𝜅2𝑉

- Compared to "perfect" 

dataset ("Expected") under 

the SM hypothesis

- −3.1 < 𝜅𝜆 < 9.0 (observed)

- −0.5 < 𝜅2𝑉 < 2.7 (observed)
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BDT results in the        
τhadτhad SR

- This shows BDT evaluation after the 

likelihood fit to the data for L(μHH,θ) in 

each category of the τhadτhad SR

- scores range from 1 (most background-

like) to 11-14 (most HH-like)

- BDT predictions are very close to 

observed scores

- Most HH signal in the high-mHH 

category of τhadτhad SR, very high 

uncertainty
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https://arxiv.org/pdf/2404.12660



BDT results in the        
τlepτhad SLT SR

- This shows BDT evaluation after the 

likelihood fit to the data for L(μHH,θ) in 

each category of the τlepτhad SLT SR

- BDT scores range from 1 (most 

background-like) to 13-14 (most HH-

like)

- BDT predictions are very close to 

observed scores

- Most HH signal in the high-mHH 

category of τlepτhad SR, slight deviation
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https://arxiv.org/pdf/2404.12660



BDT results in the        
τlepτhad LTT SR

- This shows BDT evaluation after the 

likelihood fit to the data for L(μHH,θ) in 

each category of the τlepτhad LTT SR

- BDT scores range from 1 (most 

background-like) to 12-14 (most HH-like)

- BDT predictions are very close to 

observed scores

- Most HH signal in the high-mHH 

category of τhadτhad SR
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https://arxiv.org/pdf/2404.12660



Uncertainties
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- Big statistical uncertainty from the low number of signal events

- A lot of systematic uncertainty comes from the modeling of background processes

o Parton showers and QCD radiation have a high theoretical modeling uncertainty

o Especially modeling of tt (up to 10%) and Wt (up to 36%)

o Uncertainty of 100% in the normalisation of the single Higgs boson decay into two τ 

leptons

- Uncertainties in the coupling modifiers due to sample reweighting for different 

hypotheses



Conclusion
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- Full Run 2 ATLAS dataset of 140 fb−1 at 13 TeV was used for a search for non-

resonant Higgs boson pair (HH) production in the bb τ+τ- final state

- improved sensitivity to SM HH production and anomalous couplings (κλ and κ2V)

- No evidence of HH signal 

- 95% CL upper limit on HH signal strength μHH = 5.9 (observed)

- 95% CI for couplings −3.1 < 𝜅𝜆 < 9.0 (observed), −0.5 < 𝜅2𝑉 < 2.7 (observed)



Sources

- https://cds.cern.ch/record/1482189/files/ATL-DAQ-PROC-2012-050.pdf (Tau triggers)

- https://arxiv.org/pdf/2404.12660 (original paper)

- https://arxiv.org/pdf/2004.04240 (trilinear higgs potential)

- https://arxiv.org/pdf/1107.5909 (higgs branching ratios)
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