

Universität Zürich[™]

ALARIC - a NLL accurate Parton Shower algorithm

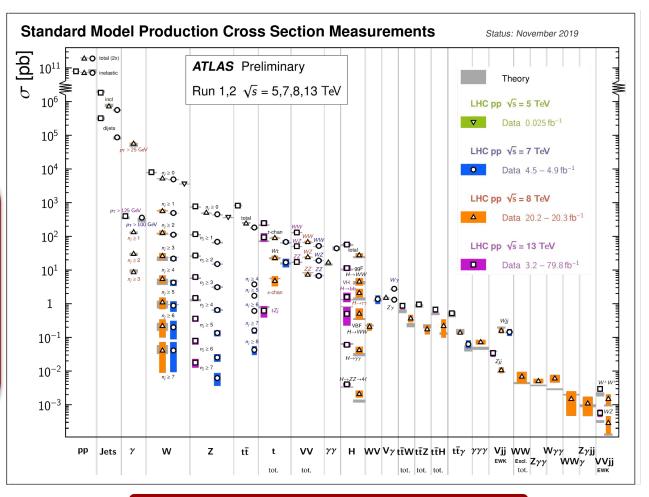
Florian Herren

2208.06057, in collaboration with Stefan Höche, Frank Krauss, Daniel Reichelt & Marek Schönherr

Quest for precision

Measurements and theory predictions reached incredible levels of precision

However, with increasing statistics theoretical uncertainties will become dominant for many processes



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Event Generators

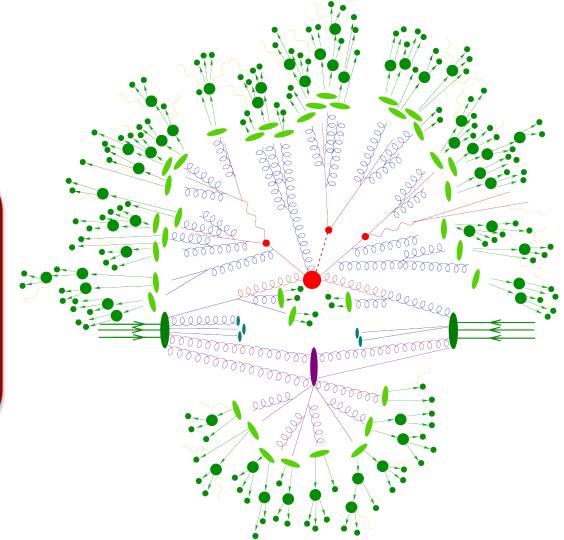
Crucial for precision Collider Physics

Short distance physics:

- Hard Process
- Parton Shower

Long distance physics:

- Underlying Interaction
- Hadronization
- QED FSR
- Hadron Decays

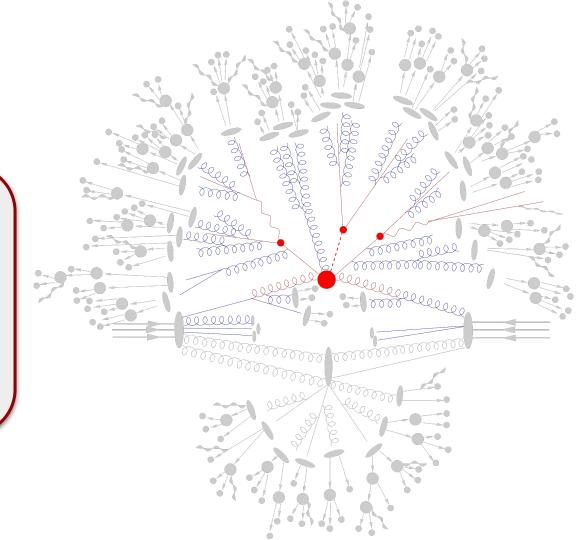


Event Generators

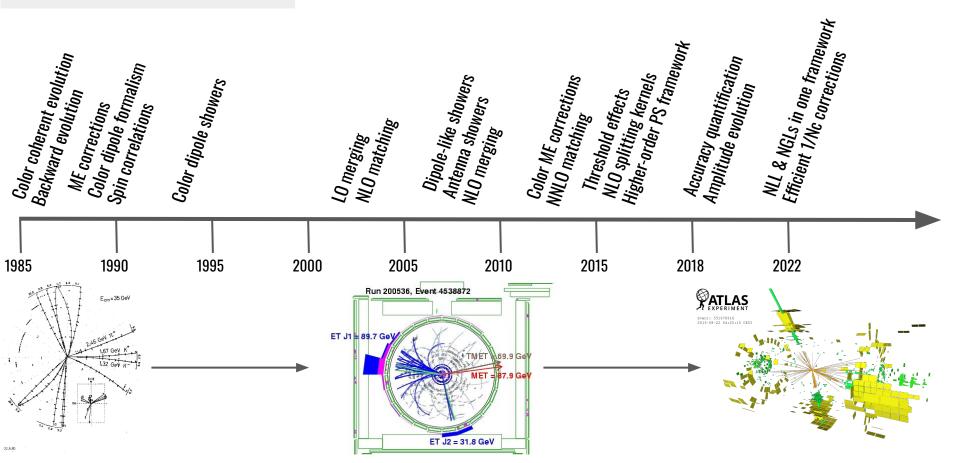
Crucial for precision Collider Physics

Short distance physics:

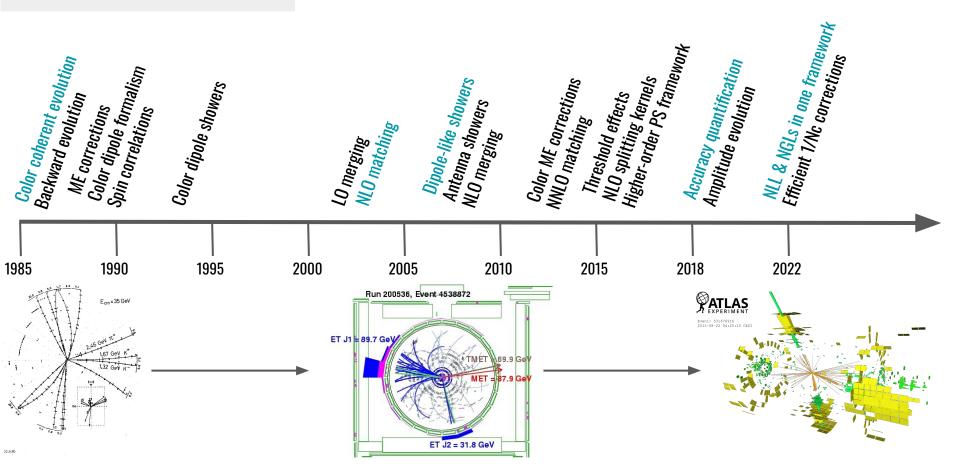
- Hard Process
- Parton Shower



Timeline

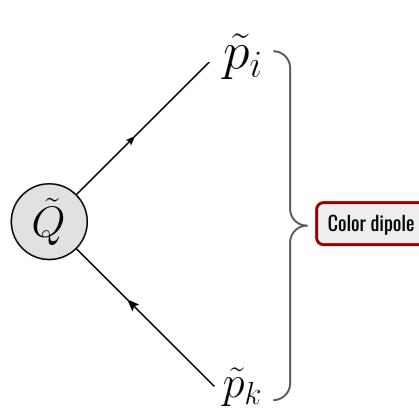


Timeline



Parton Showers

Start with fixed order configuration, e.g. ee \rightarrow qq, qq \rightarrow II, eq \rightarrow eq



Parton Showers

Add one gluon emission

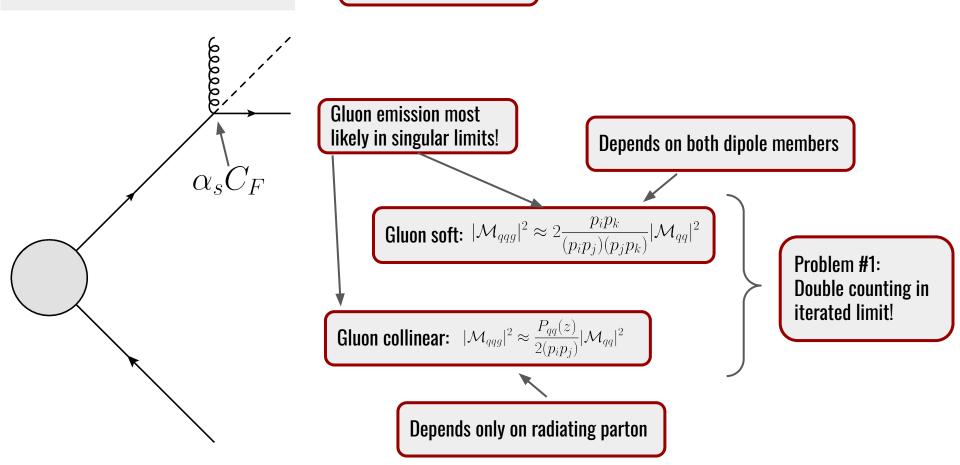
فمعمعه $\alpha_s C_F$

Gluon emission most likely in singular limits!

Parton Showers Add one gluon emission فمعمعه **Gluon emission most** likely in singular limits! $\alpha_s C_F$ **Gluon soft:** $|\mathcal{M}_{qqg}|^2 \approx 2 \frac{p_i p_k}{(p_i p_j)(p_j p_k)} |\mathcal{M}_{qq}|^2$ **Gluon collinear:** $|\mathcal{M}_{qqg}|^2 \approx \frac{P_{qq}(z)}{2(p_i p_j)} |\mathcal{M}_{qq}|^2$

Parton Showers

Add one gluon emission



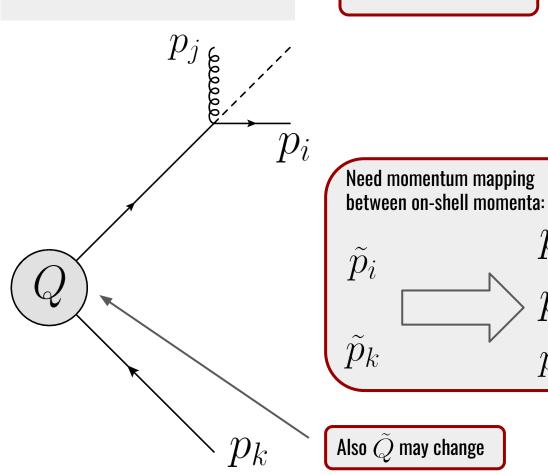
Parton Showers

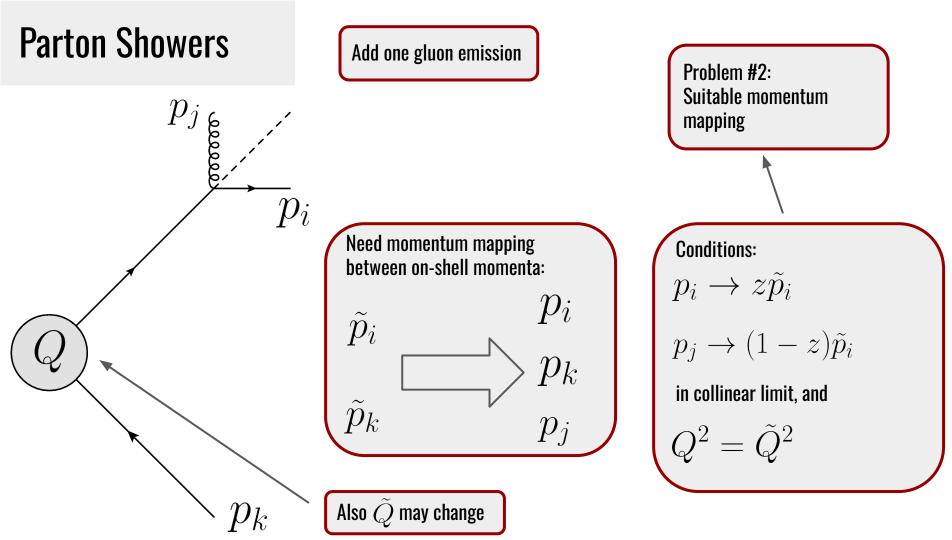
Add one gluon emission

 p_i

 p_k

 p_j





Parton Showers Repeatedly add emissions 00000 - teeeeeeeee Locococo Geococo 666666666 محووجو

Problem #3: When do we stop? → Evolution variable

Problem #4: Evolution resums large logarithms, but at which accuracy?

Problem #5: How do we handle NLO calculations?

NLL Showers

Criteria for NLL accuracy at leading color outlined in: [Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] 2002.11114

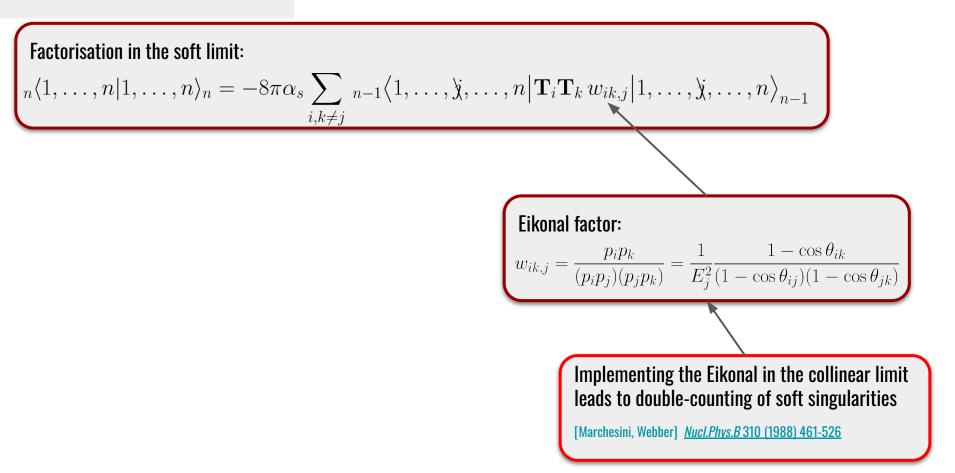
Where do the logarithms come from? (see also [Banfi, Salam, Zanderighi] <u>hep-ph/0407286</u>)

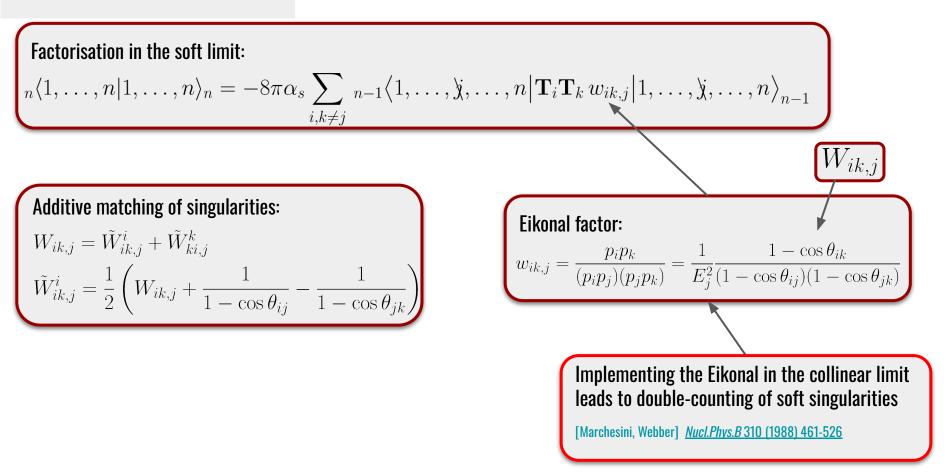
Depends on logarithmic variables of emission pairs:

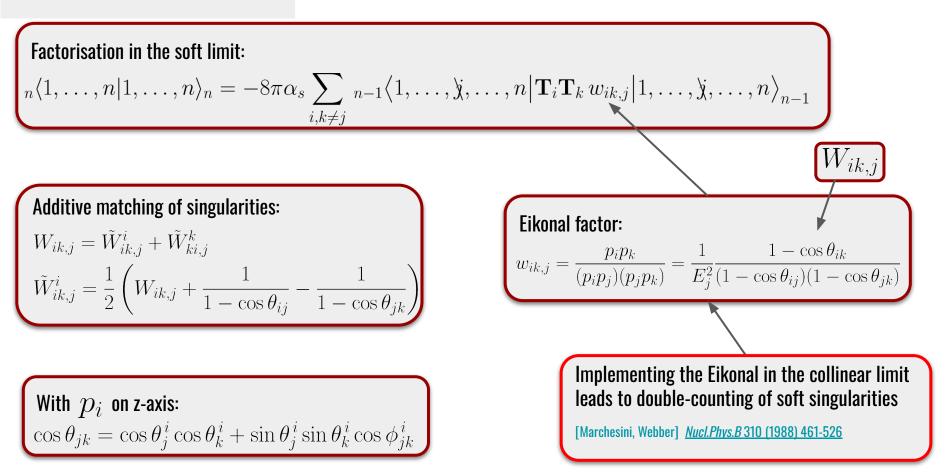
Energies/Angles	Distinctly different	Comparable
Distinctly different	LL	NLL
Comparable	NLL	NNLL

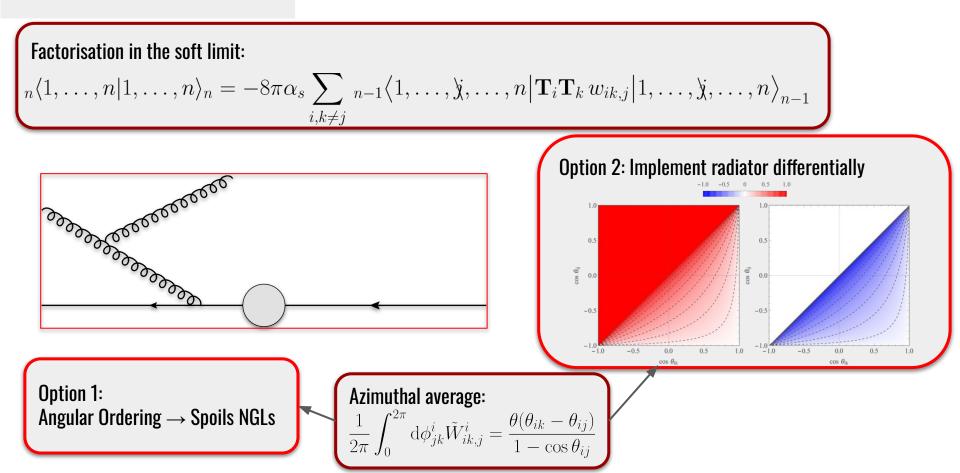
Shower needs to reproduce the correct tree-level ME squared in these regions

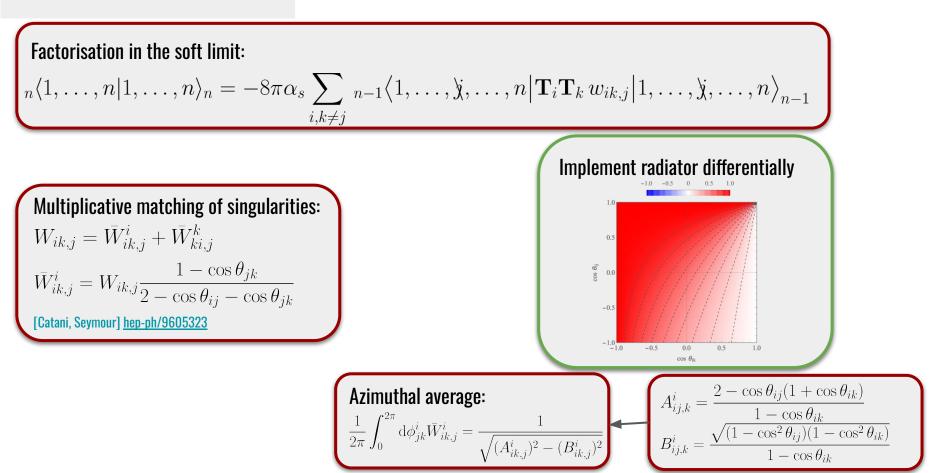
Shower needs to reproduce results of analytic resummation of rIRC observables

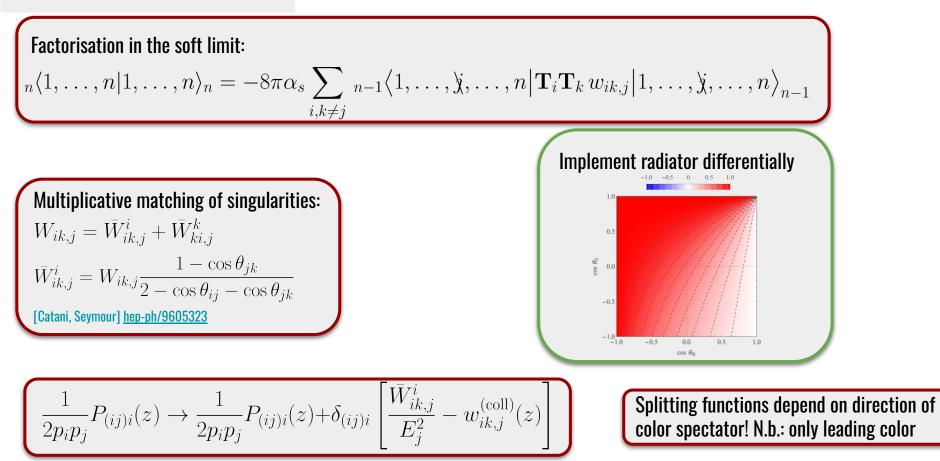


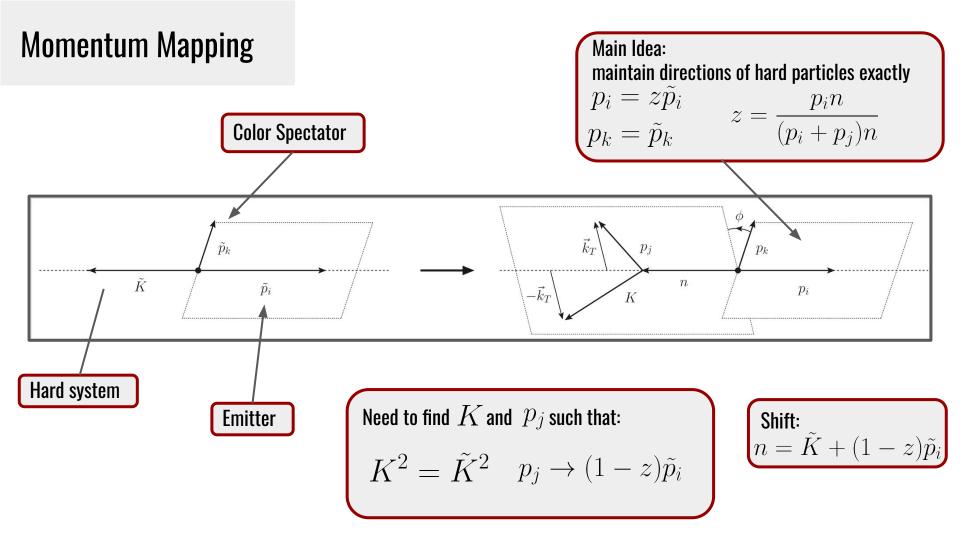


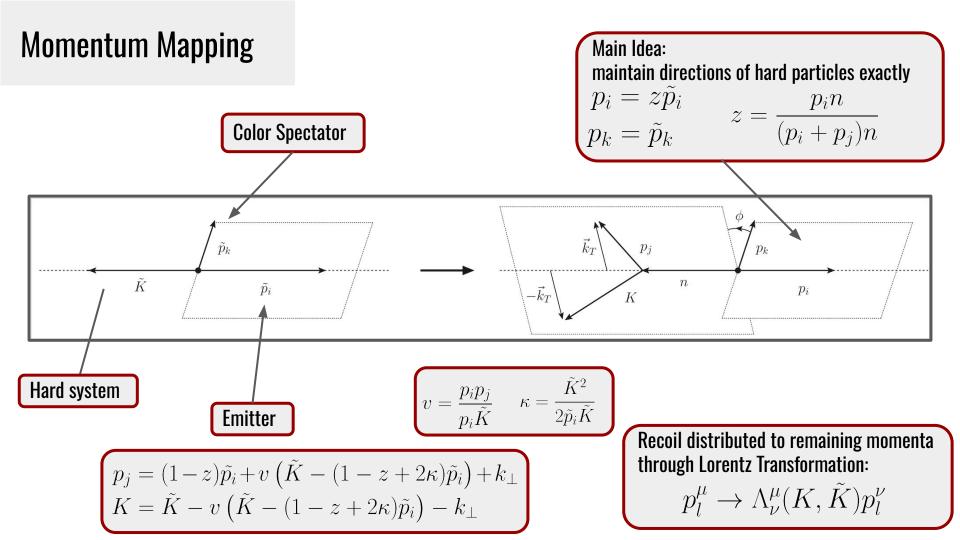






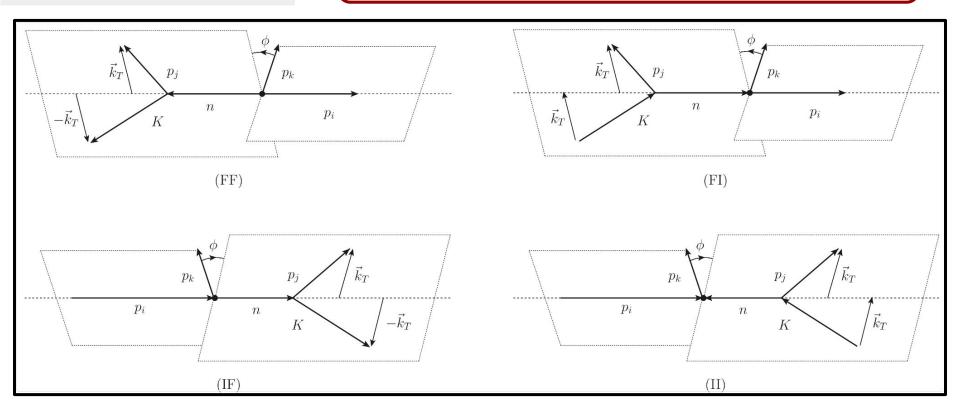






Recoil

Momentum mapping works for initial and final state emitters/spectator \rightarrow e+ e-, pp, DIS, ... all treated on same footing



Recoil

Recoil distributed to remaining momenta through Lorentz Transformation:

$$p_l^\mu \to \Lambda_\nu^\mu(K, \tilde{K}) p_l^\nu$$

$$\begin{split} \mathbf{Define} & X^{\mu} = p_{j}^{\mu} - (1-z) \, \tilde{p}_{i}^{\mu} \\ &= v \left(\tilde{K}^{\mu} - (1-z+2\kappa) \, \tilde{p}_{i}^{\mu} \right) + k_{\perp}^{\mu} \end{split} \\ & \text{At most } \mathcal{O}(k_{\perp}) \, \text{in} \\ & \text{logarithmically} \\ & \text{enhanced region} \end{split}$$

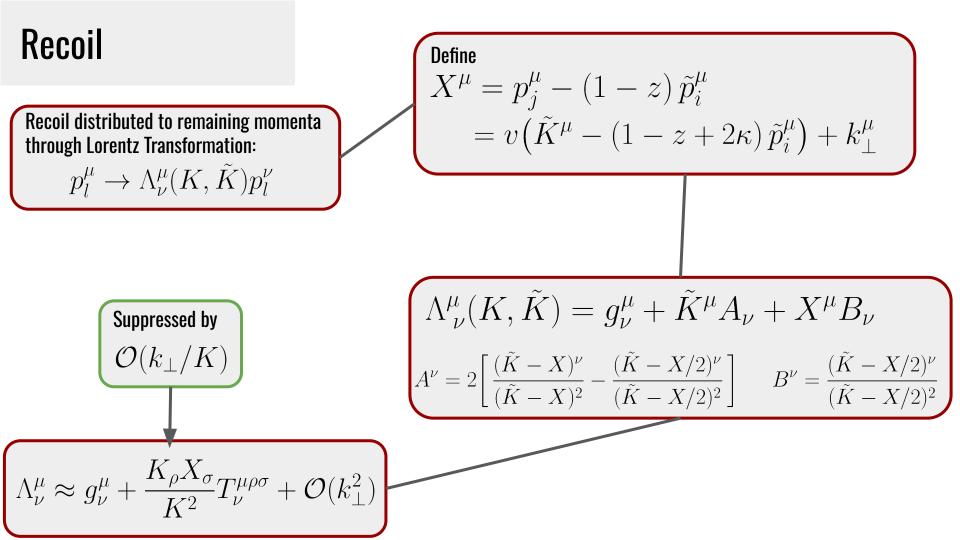
Recoil

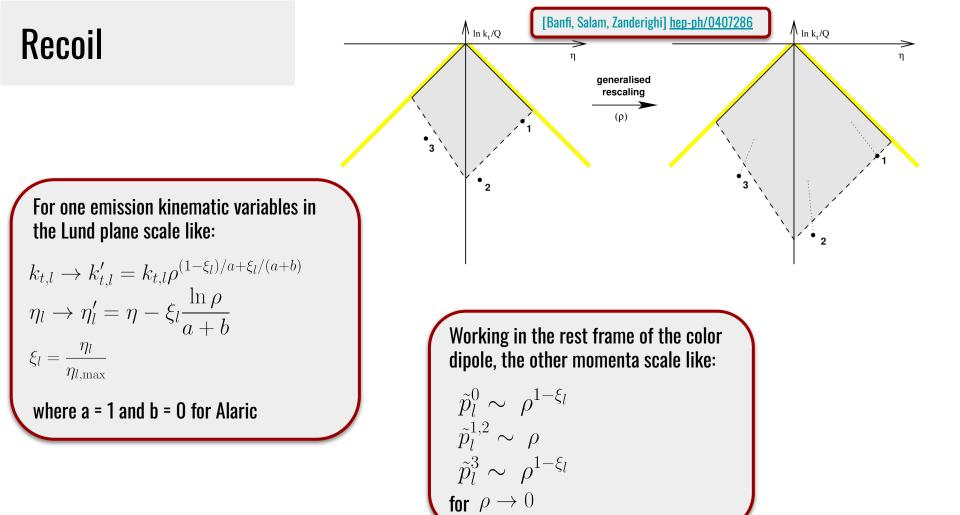
Recoil distributed to remaining momenta through Lorentz Transformation:

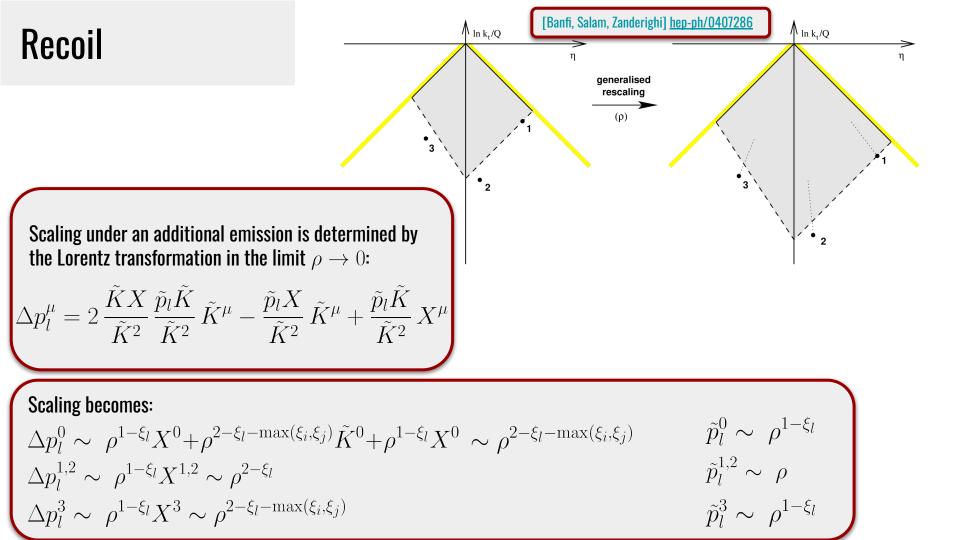
$$p_l^\mu \to \Lambda_\nu^\mu(K, \tilde{K}) p_l^\nu$$

$$\begin{split} & \overset{\text{Define}}{X^{\mu}} = p_{j}^{\mu} - \left(1-z\right) \tilde{p}_{i}^{\mu} \\ & = v \left(\tilde{K}^{\mu} - \left(1-z+2\kappa\right) \tilde{p}_{i}^{\mu}\right) + k_{\perp}^{\mu} \end{split}$$

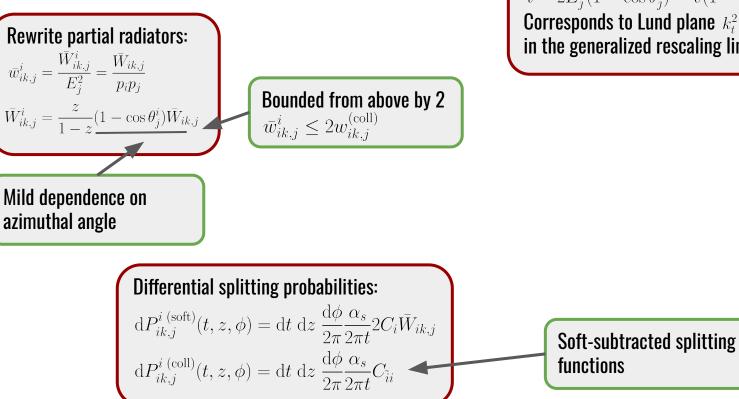
$$\Lambda^{\mu}_{\nu}(K,\tilde{K}) = g^{\mu}_{\nu} + \tilde{K}^{\mu}A_{\nu} + X^{\mu}B_{\nu}$$
$$A^{\nu} = 2\left[\frac{(\tilde{K}-X)^{\nu}}{(\tilde{K}-X)^{2}} - \frac{(\tilde{K}-X/2)^{\nu}}{(\tilde{K}-X/2)^{2}}\right] \quad B^{\nu} = \frac{(\tilde{K}-X/2)^{\nu}}{(\tilde{K}-X/2)^{2}}$$







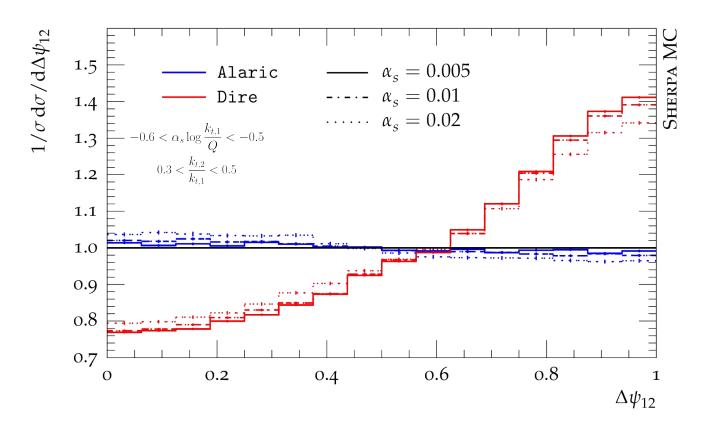
Evolution



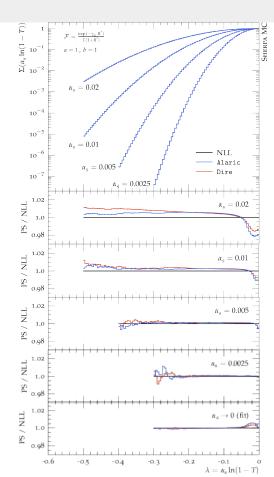
Evolution variable: $t = 2E_j^2(1 - \cos \theta_j^i) = v(1 - z)2\tilde{p}_i\tilde{K}$ Corresponds to Lund plane $k_t^2 \rightarrow \beta_{\rm PS} = 0$ in the generalized rescaling limit

Numerical Tests

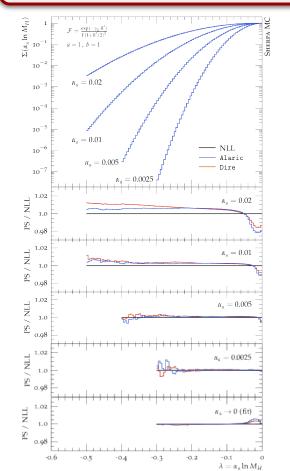
Azimuthal angle between two Lund plane declusterings Tests soft and rapidity separated emissions

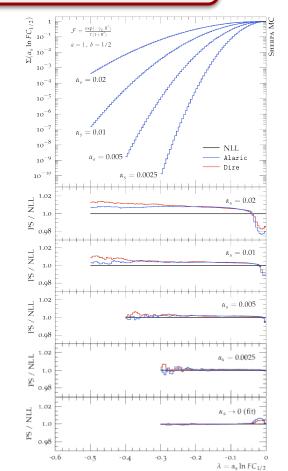


Numerical Tests

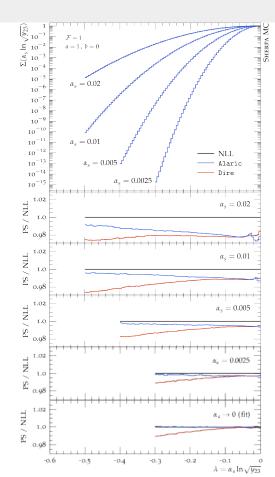


For Thrust, Heavy Jet mass and Fractional Energy Correlators with b = 1, Alaric is NLL and Dire is indistinguishable from NLL

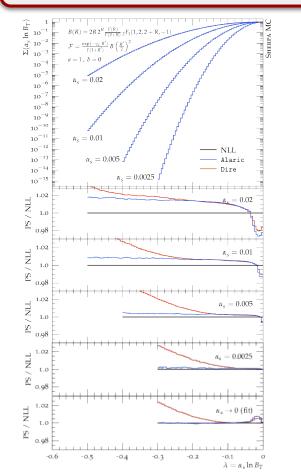


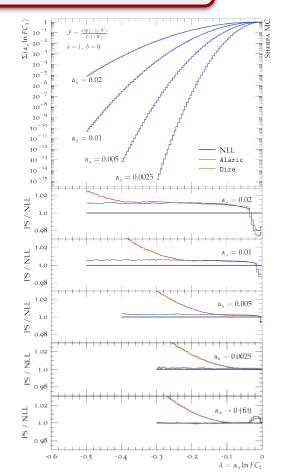


Numerical Tests



For the Two-Jet rate, total Broadening and FC with b = 1 Alaric and Dire differ, here only Alaric is NLL accurate





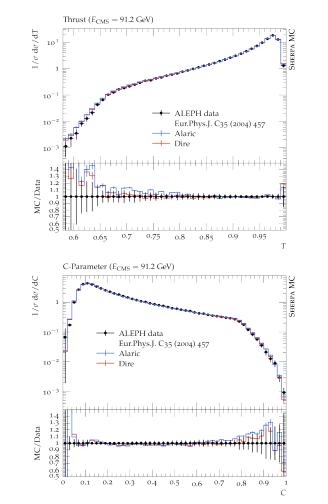
Let's look at Data

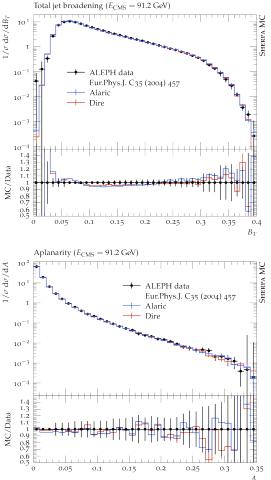
Details:

- CMW scheme
- Massless b- and c-quarks
- Flavour thresholds
- Hadronization through Lund string fragmentation

Comments:

- Perturbative region to the right, except for thrust
- Some deviations for Broadening and Aplanarity
- MECs and massive quarks will improve situation





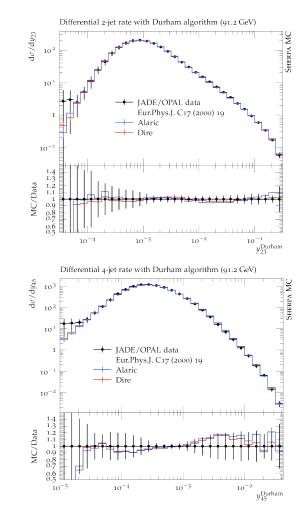
Let's look at Data

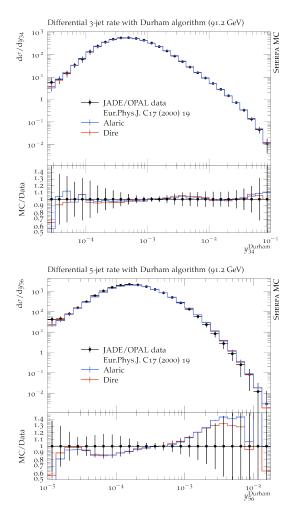
Details:

- CMW scheme
- Massless b- and c-quarks
- Flavour thresholds
- Hadronization through Lund string fragmentation

Comments:

- Perturbative region to the right
- b-quark mass corresponds to $y \approx 2.8 \times 10^{-3}$





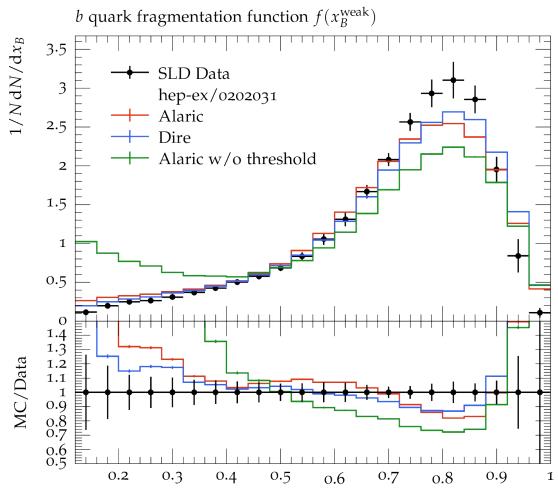
Let's look at Data

Details:

- CMW scheme
- Massless b- and c-quarks
- Flavour thresholds
- Hadronization through Lund string fragmentation

Comments:

- Low values of x dominated by $g \longrightarrow bb$
- Large values of x dominated by $b \rightarrow bg$ and hadronization



 x_B

If we compare NLO calculation and PS expanded to first order in the strong coupling:

- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission

If we compare NLO calculation and PS expanded to first order in the strong coupling:

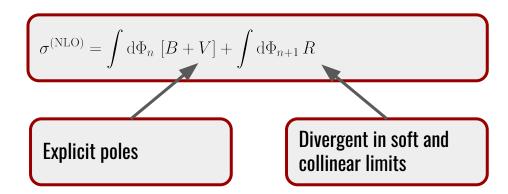
- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission
- \rightarrow Double counting of soft and collinear radiation!

 \rightarrow Find procedure such that PS treats soft and collinear emissions, FO calculation treats hard emissions and there is a smooth crossover in between them

If we compare NLO calculation and PS expanded to first order in the strong coupling:

- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission
- \rightarrow Double counting of soft and collinear radiation!

 \rightarrow Find procedure such that PS treats soft and collinear emissions, FO calculation treats hard emissions and there is a smooth crossover in between them



If we compare NLO calculation and PS expanded to first order in the strong coupling:

- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission
- \rightarrow Double counting of soft and collinear radiation!

 \rightarrow Find procedure such that PS treats soft and collinear emissions, FO calculation treats hard emissions and there is a smooth crossover in between them

$$\sigma^{(\text{NLO})} = \int \mathrm{d}\Phi_n \,\left[B + V + \int \mathrm{d}\Phi_{+1}S \right] + \int \mathrm{d}\Phi_{n+1} \,\left[R - S \right]$$

Depends on momentum mapping, poles need to be made explicit

Contains Eikonal and splitting functions

Two common schemes:

- [Catani, Seymour] <u>hep-ph/9605323</u>
- [Frixione, Kunszt, Signer] <u>hep-ph/9512328</u>

If we compare NLO calculation and PS expanded to first order in the strong coupling:

- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission
- \rightarrow Double counting of soft and collinear radiation!

 \rightarrow Find procedure such that PS treats soft and collinear emissions, FO calculation treats hard emissions and there is a smooth crossover in between them

$$\sigma^{(\text{NLO})} = \int \mathrm{d}\Phi_n \left[B + V + \int \mathrm{d}\Phi_{+1}S \right] + \int \mathrm{d}\Phi_{n+1} \left[R - S \right]$$

Depends on momentum mapping, poles need to be made explicit

Contains Eikonal and splitting functions

In the MC@NLO scheme, the subtraction terms are chosen to be the PS evolution kernels \rightarrow Need to compute integrated terms with our momentum mapping [Frixione, Webber] hep-ph/0204244

Alaric shares many similarities with Catani-Seymour identified particle subtraction \rightarrow MC@NLO matching straightforward Follow [Höche, Liebschner, Siegert] <u>1807.04348</u>

Combined integrated subtraction term for identified parton production with a partonic fragmentation function:

$$\int_{M^{+1}} \mathrm{d}\sigma^{S} + \int_{m} \mathrm{d}\sigma^{C} = \frac{1}{2} \sum_{i=a,a,\bar{a}} \sum_{\tilde{i}=1}^{m} \int_{0}^{1} \frac{\mathrm{d}z}{z^{2-2\epsilon}} \int_{m} \mathrm{d}\sigma^{B}(p_{1},\ldots,\frac{p_{i}}{z},\ldots,p_{m}) \otimes \hat{\mathbf{I}}_{\tilde{i}i}^{(\mathrm{FS})}$$

Insertion operator:

$$\hat{\mathbf{I}}_{\tilde{\imath}i}^{(\mathrm{FS})} = \delta(1-z)\mathbf{I}_{\tilde{\imath}i} + \mathbf{P}_{\tilde{\imath}i} + \mathbf{H}_{\tilde{\imath}i}$$

$$\begin{split} \mathbf{I}_{\tilde{\imath}i}(p_1,\ldots,p_i,\ldots,p_m;\epsilon) &= -\frac{\alpha_s}{2\pi} \frac{1}{\Gamma(1-\epsilon)} \sum_{k=1,k\neq\tilde{\imath}}^m \frac{\mathbf{T}_{\tilde{\imath}}\mathbf{T}_k}{\mathbf{T}_{\tilde{\imath}}^2} \left(\frac{4\pi\mu^2}{2p_i p_k}\right)^{\epsilon} \mathcal{V}_{\tilde{\imath}i}(\epsilon) \\ \mathbf{P}_{\tilde{\imath}i}(p_1,\ldots,\frac{p_i}{z},\ldots,p_m;z;\mu_F) &= \frac{\alpha_s}{2\pi} \sum_{k=1,k\neq\tilde{\imath}}^m \frac{\mathbf{T}_{\tilde{\imath}}\mathbf{T}_k}{\mathbf{T}_{\tilde{\imath}}^2} \ln \frac{z\mu_F^2}{2p_i p_k} \delta_{\tilde{\imath}i} P_{\tilde{\imath}i}(z) \\ \mathbf{H}_{\tilde{\imath}i}(p_1,\ldots,p_i,\ldots,p_m;n;z) &= -\frac{\alpha_s}{2\pi} \sum_{k=1,k\neq\tilde{\imath}}^m \frac{\mathbf{T}_{\tilde{\imath}}\mathbf{T}_k}{\mathbf{T}_{\tilde{\imath}}^2} \left[\tilde{K}^{\tilde{\imath}i}(z) + \bar{K}^{\tilde{\imath}i}(z) + 2P_{\tilde{\imath}i}(z) \ln z + \mathcal{L}^{\tilde{\imath}i}(z;p_i,p_k,n) \right] \end{split}$$

Alaric shares many similarities with Catani-Seymour identified particle subtraction \rightarrow MC@NLO matching straightforward Follow [Höche, Liebschner, Siegert] <u>1807.04348</u>

Combined integrated subtraction term for identified parton production with a partonic fragmentation function:

$$\int_{m+1} \mathrm{d}\sigma^S + \int_m \mathrm{d}\sigma^C = \frac{1}{2} \sum_{i=g,q,\bar{q}} \sum_{\tilde{i}=1}^m \int_0^1 \frac{\mathrm{d}z}{z^{2-2\epsilon}} \int_m \mathrm{d}\sigma^B(p_1,\ldots,\frac{p_i}{z},\ldots,p_m) \otimes \hat{\mathbf{I}}_{\tilde{i}i}^{(\mathrm{FS})}$$

Non-trivial integral:

$$\int_{0}^{1} \mathrm{d}z \, \mathbf{H}_{\tilde{\imath}i}(p_{1},\ldots,p_{i},\ldots,p_{m};n;z) = -\frac{\alpha_{s}}{2\pi} \sum_{k=1,k\neq\tilde{\imath}}^{m} \frac{\mathbf{T}_{\tilde{\imath}}\mathbf{T}_{k}}{\mathbf{T}_{\tilde{\imath}}^{2}} \left\{ \mathcal{K}^{\tilde{\imath}i} + \delta_{\tilde{\imath}i} \operatorname{Li}_{2}\left(1 - \frac{2\tilde{p}_{i}\tilde{p}_{k}\tilde{K}^{2}}{(\tilde{p}_{i}\tilde{K})(\tilde{p}_{k}\tilde{K})}\right) - \int_{0}^{1} \mathrm{d}z \, P_{\mathrm{reg}}^{qq}(z) \ln \frac{n^{2}\tilde{p}_{i}\tilde{p}_{k}}{2z(\tilde{p}_{i}n)^{2}} \right\}$$

If we compare NLO calculation and PS expanded to first order in the strong coupling:

- NLO calculation: contains virtual corrections, one hard, soft or collinear emission
- PS: contains one soft or collinear emission
- \rightarrow Double counting of soft and collinear radiation!

 \rightarrow Find procedure such that PS treats soft and collinear emissions, FO calculation treats hard emissions and there is a smooth crossover in between them

Evaluating the soft counterterm tells us something about efficient scale choices. In our case we obtain:

 $I_{\text{soft}} \propto \left(\frac{\mu^2(p_k n)}{(p_i p_k)(p_i p_n)}\right)^{\epsilon} \propto \left(\frac{\mu^2}{E_i^2(1 - \cos \theta_k^i)}\right)^{\epsilon} \propto \left(\frac{\mu^2}{t}\right)^{\epsilon}$

 \rightarrow The logarithms resummed by the RG-evolution are large when the soft parton is emitted from a Dipole that originates from a soft or collinear splitting of k \rightarrow k+i and correspond to the respective k_

 \rightarrow We can minimize the number of explicit higher-order corrections by choosing t as the renormalization scale

Further Developments

Massive Quarks:

- Extension of original Algorithm for massive Quarks in the final state
- Treat quasi-collinear emission separate from soft emission \rightarrow Splitting & Radiation kinematics
- Momentum mapping extended & MC@NLO matching terms computed
- NLL argumentation similar to massless case

[Assi, Höche] <u>2307.00728</u>

Hadron colliders:

- Publicly available implementation in Sherpa 3 release
- Leading-order multi-jet merging
- Tested on Drell-Yan, Z+jets, inclusive jet production & di-jets
- WIP 1: Implementation of MC@NLO matching
- WIP 2: Multi-jet merging @ NLO

[Höche, Krauss, Reichelt] 2404.14360

Conclusion

- We presented a new NLL accurate Parton Shower Algorithm: Alaric
- First dipole-like algorithm to disentangle colour and kinematics
- Strict positivity of evolution kernels
- Momentum mapping preserves directions of hard partons

Additional developments:

- Initial state emitter and spectator 🔽
- Initial state emitter and final state spectator 🔽
- Implementation in Sherpa 🔽
- Massive guarks V

TODO: higher order corrections, spin correlations, subleading colour,...

