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Higher-order QCD corrections (at NNLO)

Subtraction methods

Analytically cancel 1/€" poles by constructing integrable
counterterms
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Imposes cuts in some variable to split the phase
space. Below the cut a soft-collinear approximation
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Higher-order QCD corrections (at NNLO) AT

Subtraction methods

Analytically cancel 1/€" poles by constructing integrable
counterterms

Antenna subtraction
Gehrmann-De Ridder, Gehrmann, Glover - hep-ph/0505111

CoLoRFul subtraction
Somogyi, Trocsanyi, Del Duca - hep-ph/0502226
Local analytic sector subtraction
Magnea et al. - hep-ph/1806.09570
Nested soft-collinear subtraction
Caola, Melnikov, Rontsch — hep-ph/1702.0135220
Projection-to-Born
Cacciari et al. - hep-ph/1506.02660

Sector subtraction
Czakon - hep-ph/1005.0274, Boughezal et al. - hep-ph/1111.7041

January 27, 2025 Ivan Pedron — New Insights into N-jettiness Calculations

Slicing methods

Imposes cuts in some variable to split the phase
space. Below the cut a soft-collinear approximation
is used

® (r-slicing
Catani, Grazzini - hep-ph/0703012

® N-jettiness slicing
Boughezal et al. - hep-ph/1504.02131, Gaunt et al. - hep-ph/1505.04794

find many more not included here...
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N-jettiness slicing ﬂ(".
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The N-jettiness variable is defined by

.| 20200, 2D2Dh, 2DzPh }
T(R,U) = mm{ = 2 S
( ) Z Ql QQ Q3

\:35';@? Soft radiation
\

Can be used to perform slicing of the phase space (like in gr subtraction)

To do do
O = / dTﬁ, + - dTﬁ'

and, with the factorization theorem from SCET, we can reorganize the calculation as

or N
g do
/ dTﬁ_: B@B@S@H@HJZ-JrO(%)
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N-jettiness slicing ﬂ(".

Karlsruhe Institute of Technology

or N
g do
/ dTﬁ: B®B®S®H®1:[Jz‘+0(76)

The Beam and Jet functions (B, Ji) describe initial- and final-state collinear radiation, the Soft
function S the soft radiation, and the (process dependent) Hard function H encodes the
virtual corrections

Small cutoff Ty required so that power corrections in To/Q are under control

At NNLO, all ingredients are known. S was available for 0-, 1- and 2-jettiness, but only
recently for generic N-jettiness (hep-ph/2312.11626, hep-ph/2403.03078)

At N3LO, S is only available for zero-jettiness. Other ingredients are already known

(hep-ph/2409.11042, hep-ph/2412.14001)
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N-jettiness soft
function at NNLO



Our soft function calculation ﬂ(".

e Previous NNLO calculations based on decomposing the observable into 6 functions and
computing it numerically

(Boughezal et al. - hep-ph/1504.02540, Campbell et al. - hep-ph/1711.09984, Bell et al. - hep-ph/2312.11626)

6 [T — min(k - p1, k - p2)] 0(k-p1 —k-p2) +0(k-p2—k-p1)]

Quickly gets out of hand with number of jets/unresolved particles!!!
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Our soft function calculation ﬂ(".

e Previous NNLO calculations based on decomposing the observable into 8 functions and
computing it numerically

(Boughezal et al. - hep-ph/1504.02540, Campbell et al. - hep-ph/1711.09984, Bell et al. - hep-ph/2312.11626)

e \We use subtraction methods to calculate this ingredient of a slicing method, showing the explicit
analytical cancellation of divergences and arriving to a finite formula for it. Also, N is treated
genuinely as a parameter!!!

e \We borrow ideas from subtraction schemes to compute ingredients of slicing schemes. We wish to
see the general structure, since in principle the soft divergences are not related to the observable
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Soft function renormalization ﬂ(".
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The divergent structure of the soft function is actually very simple. It is convenient to work
In Laplace space

S(u) = /OOO dT St (T)e T

Since the renormalization is multiplicative (with matrices in color space)

A

If we write the expansion in powers of as

1
(Z2 = 52121 + Za,)
4 =14 271+ 2o,

S:1‘|—Sl‘|—52,
»§:1‘|—§1—|—§2,

S1=5—2,—7Z]

So =S8y —Zo—Z3+ 2121+ Z3 2] — 2,8, — 81 7} + 2, Z1
1. - 1 1
= 55151 + 5[21721] + 5 [51,21 — Zﬂ + Sop — Zoy — ZJ,T
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Soft function renormalization ﬂ(".

The divergent structure of the soft function is actually very simple. How simple are this Z
functions?

1 2L;; + 1T A
(45)

) 300 — 4B0(2Li; +imAij) | T1(2L; + imhyy) + 77
. J J J ] 1
= T, T
o (i) ( 863 + 16€2 T Q¢

ij

There must be a way to derive a finite representation of the
renormalized N-jettiness soft function...
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Soft function at NLO ﬂ(".

If we take Q; = 2 E; with an unresolved gluon m, the N-jettiness is given by

T(m) — Emwm — Em miﬂ{ﬂlm, P2m s P3my -+ me} Pij = 1 —7; - ﬁj
Then, the soft function is given by N
e Eikonal |
ANV dE
S(T) == YT Ty 62 [ 5oty s B O(T = Eunthn) Siom PNy
( ) (ZZJ) J J 2(27T)d—1 Erln+2 ) ( ) ]( ) Sii(m) = B2 pomim |
' \\ //

Phase space Jettiness constraint

We integrate over E, with delta, only collinear diverengences remain. we use that|limy | ; ¥)m = pim,| SO
we can rewrite

2€ 1—2¢ 1—2e¢
2 Pij [ Ympij Pij _ (2) Pij
wm - 1—2¢ 1—2¢ 1+2€gzg,m 1—2e¢ 1—2€
PimPjm PimPim Pim ij Pim pjm
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Soft function at NLO ﬂ(".
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Knowing that (n;;=p;;/2)

< pgj - > = %K@) ~ 2m T+ €)?

2F1(€7651_€71_77ij)7

el A B V(a7

T where <..>, indicates integration over directions of nn, in Laplace space we get the following bare

soft function
€ 1—2¢
Mij (2) (2) Pij
-_— . . . .
62 1] + < g’Lj,m p;],.mQGp;_m2€ n

['(1 — 2e)
S1 = a, (pa)** °) ZT - T,
By combining S1 with the renormalization matrices Z'" and Z1%, we finally obtain (L;;= In (puex/n:; ))

1 — e e”E
(i7)

@ 2 Y

o y

L ) PimPim PimPim
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Soft function at NNLO ﬂ(".

The NNLO contribution to the bare soft function is

S2 = So rRr + S2.RV — Qs %51

We further split the double-real contribution into correlated and uncorrelated pieces

1 Ca
S2,RR,7 = S2 RR,T* + S2, RR,T? = 5 Z {T; - Ty, Ty - T} Ipa i — o Z T; - T; Ir2
(i3),(k,1) (i5)
The real-virtual contribution reads
(] 27°€ 47N, ki
So RV, T = SRV’TQ + SRVt = 3 CAAK(E) (z; T, -T; Iry,j + [QS]T (;) Kij I Jlmj
1) ()

where K = Aj - Aim - Am, With Aj = 1 if both / and j refer to incoming/outgoing partons, and zero otherwise.
We have defined Fy; = fanc T2 T TS, while Ax(€) and Ne are normalization factors
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Soft function at NNLO ﬂ(".

TThe calculation of the renormalized soft function is organized as follows
Q Q Q ot
S2 — Sémcorr e S;orr e SQC

Where each finite piece is the combination of the following contributions

Uncorrelated emission

1~ -~
uncorr -G, S
2 — 9 11

~

Correlated emission
JCOorr T
S3°" = S2.rr,12 + SRVT? — Zogw — Zop —

asﬁO

€

S1
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General strategy at NNLO ﬂ(".
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Uncorrelated emission
~§1ncorr _ %S’rl Svl j>

Trivially related to iterations of NLO

‘ Similar to NLO, reuse results from
calculation without jettiness-constraint

Correlated emission 5 Use nested soft-collinear subtraction,

~ a Its from calculati ithout

Soine T sPo ) reuse results from calculation withou
2 — SQ,RR,T2 + SRV,T2 - ZZ,r — ZQ,r — Sl jettiness-constraint

We already know how to integrate eikonal, we focus on the handling of the jettiness constraint!!!
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Uncorrelated emission ﬂ(".

The S, contains an iterated contribution of the NLO soft function S+

(s ]? </OO dby,, dE, Pij Pkl >
Ira 510 = 57_Em¢'m_Enwn
1219kl 2 0 E%@+2€ Er,%+2€ ( )pzmp]m PknPlin | n

If we integrate over both energies we can disentangle the jettiness function

>~ dFE,, dE,
0 E}n—FZG E}L—I—Qe

T4 )2 (1 — 2¢€) 2T (1 — 2¢)
['(—4e) 2¢ 2¢

T — Entm — Epthy) =

The Laplace transform allows us to identify this iteration

[as]?

w2eT(1 — 2€)\ 2 1
SZ,RR,T4 — 1 Z {']:‘Z . ijTk: . Tl} ( (26 6)) <¢26 Pij > <,¢2e Pkl > _ 5 Slsl

m ' n
(7). (k) PimPim PknPln
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Triple color terms ﬂ(“.
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This contribution depends on triple products of color charges

1 1
S5 = [Zl,zj] +3 [517Z1 - ZI] + SRVt

The needed commutators can be computed as shown in (Devoto et al. — hep-ph/2310.17598)

1 27ra, wa? i
521, Z]] = > Ak Lig R = =222 Y A gy BN
(kijg) (kij)
1 a?m(pu)?€ e (1 — 2¢) Z o Pki oy
—[Sl,Zl — ZI] = 95 5 kaj anf F v
9 € F(l — 6) (kig) PkmPim /

And the real-virtual triple-color correlated contribution is

27 (p W)*N27¢  T(1 — 4e) i ) j
SRV,tC _ &SW(/,L ’LL) 6 Z K < 46 Pk ( Pkj ) > szg

Z F2(1 — 6 627E€ (ki) pkmpzm PkmPim
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Triple color terms

We can just follow the NLO case

<¢2€ IOI{ZZ >

4e¢  Pki Pk ‘
i (o) )

AT

Karlsruhe Institute of Technology

< 2) pl_—2e
— (1 + 2691%’ m) 1—2]? 1—2¢ >

1—4e €
Pr; Pk
(e aft) B (s Y
<( ki,m p]1€m4ep’2ilm4e PkmPim .

What about the rest of the finite part? The idea is to use the integral of

< Pki ( Pkj )6>

which was calculated in Devoto et al. - hep-ph/2310.17598, and use it to extract the result

19 January 27, 2025 Ivan Pedron — New Insights into N-jettiness Calculations
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Correlated emission ﬂ(".

The calculation of the correlated terms are the main bulk of the calculation

asﬁO Sl

€

ocorr T
So"" = S2 rr,1? + SRV,T2 — Z2gy — Lo —

Renormalization terms do not require integration, and the real-virtual one is

2 o e
Srv.T2 X — [0233] Ca ZTi - T <¢ff,f (%) > (Born-like)
(i) tmfMim m

The first term, that involves the correlated emission eikonal, is the one that requires attention

C C 4 N
[ So.RR,T?,r = —7A ZTz‘ Ty Lijr = —7A ZT@' T % [dpm][dpn] 6 (T — Eptpm — Entby) S77 (m, n) J
(25) (25)

(There is also an analogous and simpler quark contribution, but we focus on the gluon case)
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Correlated emission ﬂ(".

We perform a nested-subtraction of all divergent limits

IZJ p— (]_ — Sw)lzg —|— Sw I’L] Subtract strongly-ordered 2-soft limit (E, = w En)
1\ J

Y

1 . S Idc 1 S Itc Introduce partitions to separate double
w /L7 =+ - Mw )ty and triple collinear divergences

\ J
Y

Introduce sectors to
disentangle collinear

divergences and subtract {ebdcmn 4+ (1 - ebdcmn) [szn 4+ (1 . szn)]} (1 . Sw)lfjc
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Energy ordering:

wm'n — wm =+ wwn

Due to the symmetry of the
problem, we can extend the w
integration to infinity and do it:

4
-5



Energy ordering:

wm'n — wm =+ wwn

Goes like 1/€ in prefactor, we can
expand jettiness function:

Yo — 1+ delog (Ymn)




Energy ordering:

wm'n — wm =+ wwn

Double collinear: Triple collinear:
like NLO jettiness takes particular value

)46

@Dﬁm — Wln wff,m — (Pim + WPin

Finite! Just integrate numerically!




The final result ﬂ(“.

Karlsruhe Institute of Technology

e The NLO result was
~ 5 2 Wb Pij
S1 = as ZTz - T [2Lz‘j +Lizp(1 —mij) + 5 + < Lij’mpimpjm> ]
(i7) "
h ij:l ): ij d = n M
where L= In (puek/n;)and LY =1 (pimpjm)

e The NNLO one is

Sy = = S +aiCa ZTi T Gyj + a; ny TRZTz' T; Qij +azm Z FRI g, GPte

kij
(i5) (i5) (kij)

DN | —

where Gj, Q;j and Gii"P*® are finite functions with analytical terms along with a low number
numerical four-dimensional integrations over one- and two-particle phase space
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The final result ﬂ(“.

Karlsruhe Institute of Technology

They look like this Gy= 203 + (‘"’7 “2)L2+LU(“<H i

11
N — + —Lis(1 — m;;
3 t’”nﬂa:mpjm>m 3 2( mj)

9
202 Pij so\2 (11 Mi;
2 _q L Al R T
* 27 q?) - <p-£mpjm ( ( U'm) 6 ! NimTljm
Ctnple _ [8 : . 2 +< Phi D Pk

Wm Pli . o 11 137 w2
L3 4 4Ly [ Lia(1 — i) + —= In )> ) ¥ 2 (" i 4 -
Theig 3 ki ki ( 2( }kz) 12 DimPhm Dk Pim N + LLJ o (2 In +1In + ln(mm:’bm) +

MimTjm

ThmTim 3 18 ?
. . . 3 ‘ ‘
+2Lis(1— ) — 6Lis(k) + Lin(1 — 1)(21n2 — 8Ia(ni)) — () e ( ) 1 iyt )+ B n2 - D) - Lt m)) >
2 jm 3pij
c m = m
—3In(1 — mp) In? () — In 212 () + 5 In(ng;) — G:,gn 2Wiij
+ 2< Pki In ( WmPli ) In (Vmpzmp-’m‘? )> + O(F) ) 1 11 i 937 P 403;
PimPkm PkmPim ijpm m +8Liy 2/ 9% % i 4_")a2 i 162
2
We note that the function Ly; is given in Eq. (4.19), the function Wj;; reads < I (’hm) ( ) £ > 4.0 < ) >
Pim Pin /) PonfPimPin [ qmn 2 o PimPim [/
Phi Pkj Pkj /
Wi = < In=—=In— 4 — lnp In = > dw’ btd S anan o & [28.
1] DimPlem Pjm PimPhm Pim m pij { . j -6 Cmn) [den} Crmn w In Ymn Sw [L“ S'tj (mEn)]>mn
16 .3} 0
and the function Gikgn can be found in Eq. (H.16) of Ref. [38]. L Fdi
' + 7f <(w”"f“ + w™™) In g 5J (S i (m, n)]>
2 w mn
0

Gj, Qj and Gy are finite functions with analytical terms along with a low number numerical four-
dimensional integrations over one- and two-particle phase space
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Numerical checks




Numerical checks ﬂ(“.
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We compared our results with

Bell, Dehnadi, Mohrmann, Rahn, arXiv hep-ph/2312.11626 1

We focus in the “new” 3-jettiness case, with two back-to-back beams. The five directions are
ni1 = (O, O, 1), No = (O, O, —1), N3 — (Sin 913, O, COS (913),

ng = (sin 614 cos ¢4, sin O14 sin ¢4, cosb14), ns = (sin 15 cos @5, sin b1 5 sin @5, cos O15)

in the following phase-space point

37 o O 37 o

13 107 14 107 15 107 §b4 5 ’ ¢5 5
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Dipole configurations

29

Numerical checks

Dipoles Gluons Quarks
GJ/ Bell et al. Q' Bell et al.
12 116.20 = 0.01 | 116.20 = 0.16 || -36.249 + 0.001 | -36.244 + 0.009
13 38.13 + 0.03 37.63 £0.03 || -21.717 = 0.007 | -21.732 = 0.005
14 63.63 £ 0.01 63.66 + 0.06 || -25.189 + 0.003 | -25.192 + 0.006
15 107.17 £ 0.01 | 106.99 4+ 0.12 || -35.268 £+ 0.001 | -35.256 + 0.009
23 97.11 £+ 0.01 96.97 + 0.10 || -32.875 £+ 0.002 | -32.872 + 0.008
24 67.36 + 0.02 67.51 = 0.08 || -26.821 + 0.003 | -26.815 + 0.007
25 30.87 + 0.03 30.73 £ 0.04 || -21.561 £+ 0.009 | -21.561 + 0.005
34 69.43 + 0.01 69.24 + 0.07 || -25.854 + 0.002 | -25.861 + 0.006
35 106.13 £ 0.02 | 105.97 £ 0.13 || -34.799 £ 0.002 | -34.796 £ 0.008
45 74.45 + 0.02 74.36 = 0.09 || -28.247 + 0.004 | -28.251 &+ 0.007

January 27,

2025
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Tripole sums

Crripoles Bell et al.
g2 | 683.25 +0.01 | -683.23 + 0.04
&) | 22033+ 0.2 | -2203.5 % 0.1
&) | 6.324 +0.004 | -6.325 = 0.04
22 | -0.837 +0.008 | -0.830 = 0.039

The tripole sums correspond to the
four independent color structures as
specified in hep-ph/2312.11626

IAP - TTP, KIT



N-jettiness
subleading power
corrections
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Power corrections Iin N-jettiness slicing

7o do N
T—=| BRB H ||z
/ ddT KBRS ®.J-|-
v 4

e Slicing methods suffer from instabilities due to large cancellations between contributions if the
slicing parameter (cutoff) is not sufficiently small

e Can improve this by including more terms in the computation of the singular contribution

e Power-suppressed terms, particularly subleading ones, were studied in recent years, mostly at
NLO

(hep-ph/1802.00456, hep-ph/1807.10764, hep-ph/1907.12213, hep-ph/1905.08741)

But we aim for a general approach valid for an arbitrary of process!!!
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32

Power corrections to color-singlet production

In the process with f.(p.) + f» (py) — X (Px), at NLO we consider emission of a gluon k

do

ﬁ :N/[dPX]m
S—

——

AT

Karlsruhe Institute of Technology

[dk]cs(pa +pb_k_PX)5(T_76(pa7pb7k)) O(PX) Z ’Mlz(paapbakapX)

s col,pol
\

i

V

Power corrections primarily require the expansion in T of two building blocks:

€

Phase space \

Dependence on T can be
expressed in a process
independent manner

4

January 27, 2025
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/

Q

Matrix element \

Process independent
Next-to-soft corrections
from LBK theorem

No analogous theorem
for collinear radiation! /

IAP - TTP, KIT



Power corrections to color-singlet production ﬂ(".

® The expansion controlled by gluon transverse momentum k.. The jettiness (T) constraint
forces the gluon energy or the ki to be O(T):

o If k. is O(1), the gluon energy is O(T) and the
expansion is the soft expansion

Zero-jettiness

[k 2ppk
e If ko is O(T/Q), then the angle is small and we T Pas o, k) = mm( G0 )

expand in k. (collinear expansion)

The two distinct integration regions - soft and collinear - are associated with two “branches” of the cross
section with respect to T 75

—1—2e€ —1—e€

33 January 27, 2025 Ivan Pedron — New Insights into N-jettiness Calculations IAP - TTP, KIT



The soft contribution

AT
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e For the phase space: use mapping that absorbs the gluon k into the colorless final state (hep-

ph/1910.01024)
2P, - k
Pl = ATUAB(PY, — k), A—\/l— LS

2
Pab

e For the matrix element: we can use the LBK theorem to get the subleading terms

We arrive to the general expression

| Y
do(9)
T =N [ (e, P)]  OPx) |1 = i
0 i o0
_12 Zpéb m |M|2(pa7pb7PX)_I2|M|2(pa7pb7PX)ZpéL ,uO(PX)
< i€l =1 4
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The soft contribution ﬂ(".
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We arrive to the general expression in terms of the LO cross section:

[ d (8) \
((;7- :N/[d(:[)m(pavpba-PX)] {O(PX) [II _"imIQ
o i 0
_IQ Z pf ap,u] |M|2(pa7pb7 PX) - IQ|M|2(pa7pba PX) pr ap,LLO(PX)}
L 1€Ly 2 i—1 i /

Where the integrals are

=l (L) e b=l (L) (L Sho@), k=2 -

35 January 27, 2025 Ivan Pedron — New Insights into N-jettiness Calculations IAP - TTP, KIT



The collinear contribution ﬂ(".
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e For phase space: we use a mapping that absorbs the transverse momentum of k into the
colorless final state through a Lorentz Transformation

= (- aph R = PR = AL (PR

Since k ~ +/(T), we need second order expansion of boost and matrix element!

e For matrix element: we have no analogous theorem (yet) available to get the subleading
terms! First, we can use the fact that it is Lorentz invariant

Z ‘M(paapba k? A_l(PaJ))|2 — Z |M(Apa7 Apb7 Aka Px)|2

pol pol
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The collinear contribution ﬂ(“.
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LP collinear expansion given by AP splitting kernels, but no much information beyond that. We
need a way of getting subleading terms in a way we can isolate soft poles

5y — k)Y 5 — K
(p ) +7y(pb )

:_sTa YU Na
M= =gl N o ) 2pp - k

Nb + Rgn(plnpa) k) QX)] Ug,

Shut up and calculate

Have soft singularities

S IMI? = Fog + Fur + Fr, \{ECDIE Z‘DE
Na s No

a kv + Do, uky
p/(u/) — —Guv + : g

Rfin

A& S S— —

Fa F:. (subleading in col expansion)

k- pp
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The collinear contribution ﬂ(".
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The problem is that some terms require expansion, e.g.

2Pgq()

A~ _|_ A
ok Tr [N, pa N py]

This means we have to derivate Na, Nb, Rin. Some of them can be rewritten in terms of
derivatives of the Born (like in LBK)

1
(Eaa,u - 8b,u) |M($paapb7 PX)‘z

But in general we need to calulate traces of these Green’s functions and their derivatives. But
we can calculate in a systematic way using Berends-Giele like recursion relations
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The collinear contribution

E.g.

Collinear contribution

it EN 7
Clgfa - %TI‘ [(—Nél)’#mﬁa - NEE(])W«#-) (Rgl)l)!’/*"' _ Né”)s"‘paz ) ﬁb}
1/ N 1), NN ﬁaﬂy A g#V A~ RZ%
T [Né.”)mpa (Rg}) net _ N +2_ng) pb} i {Némmpaﬁ-gﬂf' +’Y“]

1
_ Ty [Né“)ﬁ& NO* (25, + ﬁb)] +ee.
S
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‘ P, (x
CNLP.a _ —Qfd@m IM(pb,pa,PX)V O(Px) + /da: d@ﬁ{% [Wa(x)

s . . 5
+-(1- .:r:)gﬁ_a (D;,m’b |M|2(pb,.:cpa, )= 2Tr [Na“pr;pb]) bah Ly

4
s(1—ux)

4 |M|2(Pb,$pa, “‘)tﬁ#hvyll‘ﬂful‘uul}

+ M (pys Tpas -..) 14 () Ly —

ot
(L—z)t

v

(H,m + 2ph - (g’mr + Lugg) LPU) |IM|?(py, 2pa, ...)

OPap

(Tr [Na_;aaRE“*ﬁb} n C.c.) + Fina

— 2Tr [Noys Ny o]

N, (o — (1~ w)ﬁa)“f‘”) ﬁb] e

+ Tr [Naﬁﬁ”fpﬁﬂ (Rﬁ;{'_ T (1—x)s

2 N, pary,
+ 3 Ty [Nﬂ;aa (Rg“+ . M) ﬁb] +ec.
! S

— T

baﬁpr} O(PX)
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Recursion in N-photon production

We can calculate a quark current in a recursive way

m=

E (teq€m,)

QaawN/

m)
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Recursion in N-photon production ﬂ(".

Karlsruhe Institute of Technology

For Rsn

N
REH(Q? kﬂvbN) = Z (’L@qém) GV (Q7 kqubN/m)

m=1

m—+ 1 m—1

Where the recursion relation for G also involves J:

N
G¥ (g, ki yn) = J(@,9n) + ) (iegem) G (g, k; wN/m)]
m=1
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Examples: Drell-Yan ﬂ(".
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1072 -
® |n these simple cases we can
compare with naive expansion of NLO 10 1
matrix element. =
% 1076
e \We can also do some numerical ]
checks: L
coefficient fit analytic 10710 1
LP. LL —4. 740 T40 718 —4.740 740 741
LP, NLL  13.741118266 13.741 118217 102 1024 102 106 10-2 108 10~ 100
NLP, LL 0.000 179 950 0.000 000 000 7=/t
NLP. NLL —-1.071083950 —-1.072546919
O(p1,p2)=‘9((p1 +p2)2—80) so=0.1, Q=01 s=1

Did the same for 2y, and now we apply it to 4y+ to show the potential of the approach
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Conclusions



In conclusion... ﬂ(".

stitute of Technology

¥ We calculated the N-jettiness soft function, demonstrating analytical
cancellation of poles

v Derived a simple representation for finite jettiness-dependent remainder,
allowing for faster implementations. In agreement with other calculations

v Showcased the benefits of using subtraction-inspired methods to derive
building blocks of slicing methods

v We built a process-independent framework for subleading power
corrections in a generic color-singlet production case

v Next-to-soft corrections easily obtained from LBK theorem, but next-to-
collinear term is a complicated business
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