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Recapitulation of the previous lecture

Parton densities
Let us move to hadron (pp) colliders!
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Recapitulation of the previous lecture

Parton luminosity
General formula for the cross section of a process:
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Recapitulation of the previous lecture

Cross sections for pp collisions
proton - (anti)proton cross sections
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Hadron collider strategy for the next years
0o Increase the LHC luminosity by an order of magnitude — HL-LHC.
o Increase the centre-of-mass energy ,/s,, by an order of magnitude —
FCC-hh.



Recapitulation of the previous lecture

Future hadron colliders

0 HL-LHC: /s =14 TeV, [Ldt=3 ab™!
Increase of the LHC's luminosity by an order of magnitude with
improved beam optics in the collision zones.

o FCC-hh: /s =100 TeV, [ Ldt=30 ab™!
Increase of the center-of-mass energy with a new storage ring of the
four time the circumference of the LHC ring and dipole magnets
with twice the field strength.

Most importants goals of the physics programmes (without details)

o HL-LHC
e Measurement of the properties of the Higgs boson, in particular
observation of the decay H — ptu~ and of first evidence of Higgs
boson pair production.
e Search for physics beyond the Standard Model.
o FCC-hh
e Precision measurements of Higgs boson properties, especially the
study of the Higgs boson pair production for the exploration of
the structure of the Higgs boson self-coupling.
e Search for physics beyond the Standard Model.



Recapitulation of the previous lecture

Conceptual design of the FCC ring
FCC-CDR

—— LHC shape [ study boundary Molasse Carried
~—— FCC shape Limestone molasse

Fig. 2. Left: 3D, not-to-scale schematic of the underground structures. Right: study bound-
ary (red polygon), showing the main topographical and geological structures, LHC (blue
line) and FCC tunnel trace (olive green line).



Recapitulation of the previous lecture

Dipole magnets for the FCC-hh
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Fig. 3.1. Main dipole cross-section.

o Plan to use NbsSn wires as superconductors in magnets.
= Achievable field strength: 16 T = /s =100 TeV.



Recapitulation of the previous lecture

Comparison of the HL-LHC and the FCC-hh

LHC HL-LHC FCC-hh
Initial Nominal

Physics performance and beam parameters
Peak luminosity’ (10%% cm~2?s™1) 1.0 5.0 5.0 <30.0
Optimum average integrated luminos- 0.47 2.8 2.2 8
ity/day (fb~")
Peak number of inelastic events/crossing | 27 135 levelled 171 1026
Total/inelastic cross section o proton 111/85 153/108
(mbarn)
Beam parameters '
Number of bunches n 2808 10400
Bunch spacing (ns) 25 25 25
Bunch population N (10'1) 1.15 2.2 1.0

o Similar operating conditions at the FCC-hh in the initial phase like at

the HL-LHC.

= Detectors which will were developed for the HL-LHC are suitable for
the operation at the FCC-hh in phase 1.

o Evolution of the HL-LHC detectors for the areas of very high particle

fluxes needed.




Recapitulation of the previous lecture

Example of a collision event at the HL-LHC

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <p>=200




Recapitulation of the previous lecture

Basic structure of a particle detector at a hadron collider
Hadron calorimater for the detection

of hadronnic showers

Electromagnetic calorimeter for the
detection of electromagnetic showers

Myon system
for the identification
of charged particles as muons
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Different operation conditions at ete~ and pp colliders

o As explained in the previous lecture, cross sections are much smaller

in eTe~ collission than in pp collisions because only electroweak
processes are accessible in the ete™ vertex while there is a huge total
pp because the partons also interact strongly.

Much smaller particle fluxes and particle multiplicities in the detectors
at an ete™ than at a pp collider.

Different requirements for the detectors.

eTe™ collision event pp collision event

QE'ATLAS
Bocexiuenr From
Higgs decay

Other
particles

From
Higgs decay

Higgs event in ete
Higgs event in pp

(ATLAS: H 5 ZZ* - ppee candidate)
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Recapitulation of the previous lecture

Charged particle trajectories in the inner detector
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Beispiel. p=1 GeV.rp=0. B=2T.
a(10 cm) = 60 mrad. y(10 cm) =3 mm.
a(l m)=0,6 rad. y(1 m) =30 cm.
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Recapitulation of the previous lecture

Momentum resolution in the inner detector
o Deflection angle at distance r from the pp interaction point:

q
a(r) == | Bds
) po/

o Total deflection angle: a := &(Tmaz) (Fmae radius of the inner
detector).

o Error propagation:
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Recapitulation of the previous lecture

Momentum resolution in the inner detector

op o
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o Contributions to da 0
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P lq| [ Bds lq| [ Bds
= Best possible momentum given by the ratio of multiple scattering and the
magnetic field integral.
= High momenta (small values of «): Momentum resolution determined by the ratio
of the spatial resolution of the detector and the magnetic field integral. The
momentum resolution degrades with increasing p.

Hence

p
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Instrumentation of the inner detector

Requirements
o General requirements
o As little detector material as possible to minimize the multiple
scattering contribution to the momentum resolution.
e High spatial resolution to maximize the momentum resolution for
highly energetic particles.
o Additional requirements at a hadron collider
e High granularity to be able to separate particle trajectories even
in the presence of high charged particle densities.
e Radiation hardness.

Detector types in modern inner detectors
o Experiments at ete™ colliders
e Highly granular semiconductor detectors close to the beam line
for secondary vertex reconstruction.
e Low-X; semiconductor or gaseous ionization detectors at larger
distance from the beam line.
o Experiments at hadron colliders
e Entire inner detector with highly granular and radiation hard
semiconductor detectors.
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Introduction to semiconductor detectors



Energy bands in solid-state bodies
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Charge carriers in semiconductors

Example: Covalent bonds between silicon atoms.

A

Silicon atom sharing electrons with
its 4 nearest neighbours




Charge carriers in semiconductors

Example: Covalent bonds between silicon atoms.
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Two source of electrical conductivity in semiconductors:

o Motion of free electrons in the conduction band
and

o Motion of holes in the valence band.

(Only motion of electrons in the conduction bands in conductors.)
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Doped semiconductors

o The number of free electrons and holes is the same in pure
semiconductors.

o There can be more free electrons than holes and vice versa in doped
semiconductors.
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Doping of silicon with pentavalent atoms

Pentavalent atoms: arsene, phosphor, antimony.
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= Increased conductivity due to the excess electrons which can be very
easily excited thermally into the conduction band.

Nomenclature: n-type semiconductor.
Main charge carriers in an n-type semiconductor: electrons.
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Doping of silicon with trivalent atoms

Trivalent atoms: gallium, boron, indium.

"Excess”
hole
Acceptor level
Acceptor slightly above the
impurity edge of the valence

band

= Increased conductivity due to excess holes into which valence
electrons can be easily excited thermally.

Nomenklatur: p-type semiconductor.
Main charge carriers in an p-type semiconductor: holes.
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The pn junction
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N p: Acceptor-/Donor concentration
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Size of the depletion zone

—eNy (z € [—zp,0])
p(x) =< +eNp (z € [0,zn])
0, else

divE = £ leads to Cfi—f @, such that

E(z) = 0 (z<—xp,x>zy),
e
B(z) = ——Na(z+ap) (x € [-25,0)),
e
E(x) = +END(x—xn) (x €[0,z,]).
Continuity at £ =0 leads to
T Np

= The deplection zone extends further into the region of lower doping
concentration.
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Contact potential

Potential difference (so-called " contact potential™)
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Increasing the depletion zone

The deplection zone can be increased by applying a so-called " bias voltage
" UBC

Depletion
Zone
without
Bias

I
|
|
! P
|
|

- 2¢(Up + Up) 2¢(Up + Up)
eNp(1+ R2) eNa(l+ F2)

Ugp ~ 300 V for complete depletion of the pn junction.

Depletion
Zone ———J

with

Bias
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Basic principle of a semiconductor detector

Liberated charge carriers which are pulled
by the electric field towards the contact

Signal

<«— Metallic contact

Sensitive area of a fully
depleted pn junction

—

lonizing particle

In order to prevent the creation of an ohmic contact with a deplection
zone extending far into the semiconductor, contact surfaces with highly

doped layers are used.
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Example: silicon strip detector for position measurements

Abb. 8.36 Direkt (DC, rechts) und ka-
pazitiv (AC, links) gekoppelte Auslese ei-
nes Streifendetektors.

Kolanoski, Wermes 2015
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