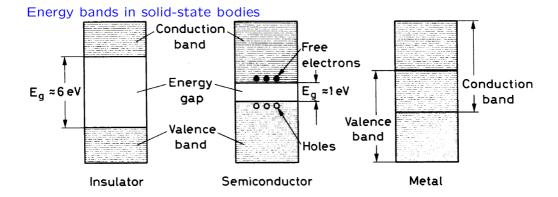
Concepts for Experiments at Future Colliders I

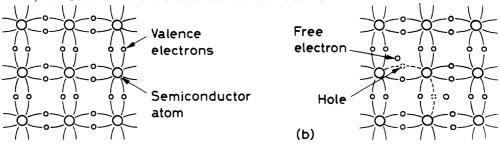
PD Dr. Oliver Kortner

25.11.2024


Instrumentation of the inner detector

Requirements

- General requirements
 - As little detector material as possible to minimize the multiple scattering contribution to the momentum resolution.
 - High spatial resolution to maximize the momentum resolution for highly energetic particles.
- Additional requirements at a hadron collider
 - High granularity to be able to separate particle trajectories even in the presence of high charged particle densities.
 - Radiation hardness.


Detector types in modern inner detectors

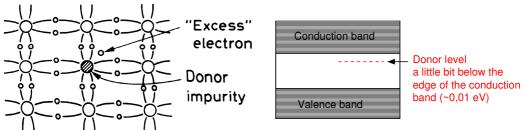
- Experiments at e^+e^- colliders
 - Highly granular semiconductor detectors close to the beam line for secondary vertex reconstruction.
 - \bullet Low- X_0 semiconductor or gaseous ionization detectors at larger distance from the beam line.
- Experiments at hadron colliders
 - Entire inner detector with highly granular and radiation hard semiconductor detectors.

Charge carriers in semiconductors

Example: Covalent bonds between silicon atoms.

Two source of electrical conductivity in semiconductors:

- Motion of free electrons in the conduction band and
 - Motion of holes in the valence band.

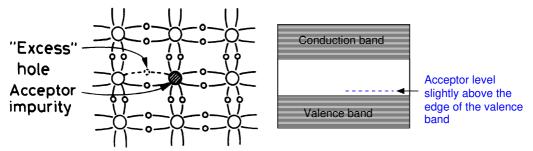

(Only motion of electrons in the conduction bands in conductors.)

Doped semiconductors

- The number of free electrons and holes is the same in pure semiconductors.
- There can be more free electrons than holes and vice versa in doped semiconductors.

Doping of silicon with pentavalent atoms

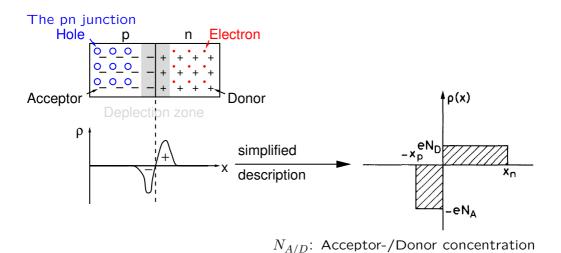
Pentavalent atoms: arsene, phosphor, antimony.


 \Rightarrow Increased conductivity due to the excess electrons which can be very easily excited thermally into the conduction band.

Nomenclature: n-type semiconductor.

Main charge carriers in an n-type semiconductor: electrons.

Doping of silicon with trivalent atoms


Trivalent atoms: gallium, boron, indium.

⇒ Increased conductivity due to excess holes into which valence electrons can be easily excited thermally.

Nomenklatur: p-type semiconductor.

Main charge carriers in an p-type semiconductor: holes.

Size of the depletion zone

$$\rho(x) = \begin{cases} -eN_A & (x \in [-x_p, 0[)\\ +eN_D & (x \in [0, x_n])\\ 0, & \text{else} \end{cases}$$

$$div \vec{E} = rac{
ho}{\epsilon}$$
 leads to $rac{dE}{dx} = rac{
ho(x)}{\epsilon}$, such that
$$E(x) = 0 \ (x < -x_p, x > x_n),$$

$$E(x) = -rac{e}{\epsilon} N_A(x+x_p) \ (x \in [-x_p,0[), E(x)] = +rac{e}{\epsilon} N_D(x-x_n) \ (x \in [0,x_n]).$$

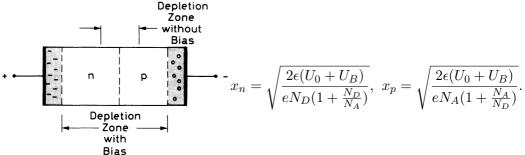
Continuity at x = 0 leads to

$$N_A x_p = N_D x_n \Leftrightarrow \frac{x_p}{x_n} = \frac{N_D}{N_A} \ (*)$$

⇒ The deplection zone extends further into the region of lower doping concentration.

Contact potential

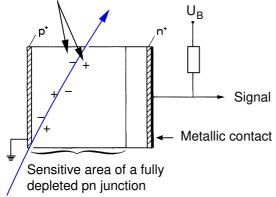
Potential difference (so-called "contact potential")


$$U_{0} = -\int_{-x_{p}}^{x_{n}} E(x) dx = + \frac{eN_{A}}{2\epsilon} (x + x_{p})^{2} \Big|_{-x_{p}}^{0} - \frac{eN_{D}}{2\epsilon} (x - x_{n})^{2} \Big|_{0}^{x_{n}}$$
$$= \frac{e}{2\epsilon} (N_{D}x_{n}^{2} + N_{A}x_{p}^{2})$$

Size of the depletion zone

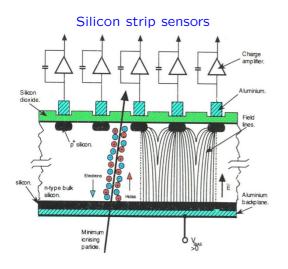
$$x_n = \sqrt{\frac{2\epsilon U_0}{eN_D(1 + \frac{N_D}{N_A})}}, \ x_p = \sqrt{\frac{2\epsilon U_0}{eN_A(1 + \frac{N_A}{N_D})}}.$$

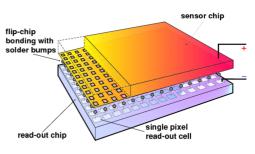
Increasing the depletion zone


The deplection zone can be increased by applying a so-called "bias voltage" U_B :

 $U_B \sim 300$ V for complete depletion of the pn junction.

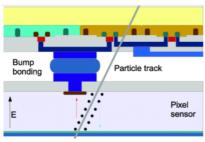
Basic principle of a semiconductor detector


Liberated charge carriers which are pulled by the electric field towards the contact

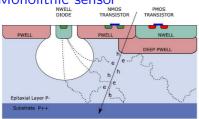

Ionizing particle

In order to prevent the creation of an ohmic contact with a deplection zone extending far into the semiconductor, contact surfaces with highly doped layers are used.

Strip and pixel sensors



Silicon pixel sensors

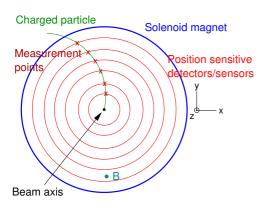


Monolithic sensors

Hybrid sensor

Monolithic sensor

- Sensor and amplifier chip are two separate devices.
- Concept successfully used at the (HL)-LHC: required resolution, speed, granularity, radiation hardness.
- Disadvantage for the FCC-ee where radiation hardness is not an issue: a lot of extra material due to the amplifier chip


- Sensor and amplifier combined in one device.
- Main advantage: reduction of material.

Functions of an inner detector

Tasks

- Measurement of the charge q and the momentum \vec{p} of a charge particle.
- Measurement of the particle's origin/vertex.

Basic structure of an inner detector

Parameters of the reconstructed track

- Sign of the curvature \rightarrow sgn(q).
- Size of the curvature $\rightarrow p$.
- Direction close to the beam axis $\rightarrow \vec{p}/p$.
- Distance of the track from the beam axis → Vertex of the particle.

Momentum resolution of an inner detector

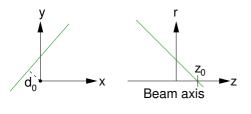
Recapitulation:

$$\frac{\delta\left(\frac{q}{p}\right)}{q/p} = \left.\frac{\delta\left(\frac{q}{p}\right)}{q/p}\right|_{Multiple\ scattering} \oplus \left.\frac{\delta\left(\frac{q}{p}\right)}{q/p}\right|_{Spatial\ resolution}$$

- $\bullet \frac{\delta\left(\frac{q}{p}\right)}{q/p}\bigg|_{Multiple \ scattering} \text{ independent of } \frac{q}{p}.$
- $\bullet \left. \frac{\delta\left(\frac{q}{p}\right)}{q/p} \right|_{Spatial\ resolution} \propto \frac{p}{|q|}.$

Momentum resolution of an inner detector

Recapitulation:

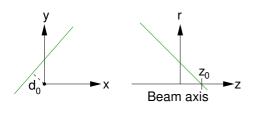

$$\frac{\delta\left(\frac{q}{p}\right)}{q/p} = \left.\frac{\delta\left(\frac{q}{p}\right)}{q/p}\right|_{Multiple\ scattering} \oplus \left.\frac{\delta\left(\frac{q}{p}\right)}{q/p}\right|_{Spatial\ resolution}$$

- $\bullet \left. \frac{\delta\left(rac{q}{p}
 ight)}{q/p} \right|_{Multiple \ scattering}$ independent of $rac{q}{p}.$
- $ullet \left. rac{\delta\left(rac{q}{p}
 ight)}{q/p}
 ight|_{Spatial\ resolution} \propto rac{p}{|q|}.$
- Estimation of $\frac{\delta\left(\frac{q}{p}\right)}{q/p}\bigg|_{Spatial\ resolution}$:

$$\frac{\delta\left(\frac{q}{p}\right)}{q/p}\bigg|_{Spatial\ resolution} \approx \frac{\sigma 2\sqrt{5}}{BL^2\sqrt{n}} \cdot \frac{p}{|q|};$$

- σ : Spatial resolution of a single measurement plane.
- B: Magnetic field strenght in the inner detector.
- L: Radius of the inner detector.
- *n*: Number of (equidistant) measurement planes.

Impact parameter


Nomenclature

- d_0 : Transverse impact parameter.
- \circ z_0 : Longitudinal impact parameter.

Conventions

 d_0 and z_0 are expressed either relative to the average collision point or relative to the primary vertex.

Impact parameter

Nomenclature

- d_0 : Transverse impact parameter.
- ullet z_0 : Longitudinal impact parameter.

Conventions

 d_0 and z_0 are expressed either relative to the average collision point or relative to the primary vertex.

Requirements for the innermost detector plane for the d_0 - and z_0 measurements

- Simplifying assumptions
 - Consider z_0 measurement.
 - Tracks are straight close to (0,0,0).
 - Two detector planes at r_1 and r_2 with spatial resolutions σ_1 and σ_2 .
- \circ z_0 resolution

$$\sigma_{z_0} = \frac{\sqrt{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}}{|r_2 - r_1|} \oplus \sigma_{Multiple \ scattering}$$

 \Rightarrow Thin layers close to the beam axis with high momentum resolution to maximize σ_{z_0} .

Basic parameters of the HL-LHC and the FCC

Centre-of-mass energy and luminosity

Collider	\sqrt{s} [TeV]	\mathcal{L}_{max} [cm $^{-2}$ s $^{-1}$]	$\int \mathcal{L}dt$ [ab ⁻¹]
HL-LHC	14	$7,5 \cdot 10^{34}$	3
FCC, phase 1	100	$5 \cdot 10^{34}$	2,5
FCC, phase 2	100	$30 \cdot 10^{34}$	15

Scenarios

- HL-LHC: 2026 bis 2036.
- FCC, phase 1: 10 years of operation.
- FCC, phase 2: 15 years of operation.

Number $N_{pile-up}$ of inelastic pp collisions per bunch crossing

- HL-LHC: 140 (bunch crossings every 25 ns).
- FCC, phase 1:
 - 170 (bunch crossings every 25 ns).
- FCC, phase 2, 2 scenarios:
 - 1020 (bunch crossings every 25 ns).
 - 204 (bunch crossings every 5 ns).

Minimum-bias events at the FCC and the HL-LHC

Radiation levels in the detectors depend on the structure of minimimum-bias events (simplified: "inelastice pp collisions without a hard scatter).

Cross section of inelastice pp collisions

- \approx 80 mb at \sqrt{s} =14 TeV.
- \approx 100 mb at \sqrt{s} =100 TeV, hence 25% larger than at the HL-LHC.

Charged particle multiplicity per rapidity unit

- \approx 5,4 at \sqrt{s} =14 TeV.
- \approx 8 at \sqrt{s} =100 TeV, hence 1.5 times larger than at the HL-LHC.

Average partiple momentum

- \approx 0.6 GeV at \sqrt{s} =14 TeV.
- \approx 0.8 GeV at \sqrt{s} =100 TeV, hance 1.3 times larger than at the HL-LHC.

Minimum-bias events at the FCC are very similar to those at the LHC.

 \Rightarrow Operation conditions in phase 1 of the FCC very similar to the operation conditions at the HL-LHC.

Radiation levels in the inner detector

Inner detector: Radiation levels in the first pixel detector layer (r = 3.7 cm)

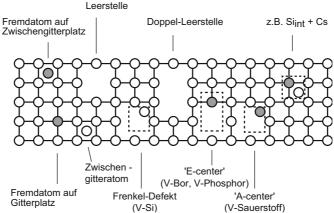
	$HL ext{-LHC}$ (3 ab^{-1})	FCC, phase 1	FCC, phase II
1 MeV-neq flux [cm ⁻²]	$1.5 \cdot 10^{16}$	$3 \cdot 10^{16}$	$3 \cdot 10^{17}$
Dose [MGy]	4.8	9	90

⇒ Semiconductor detector for the HL-LHC are also suitable for the first phase of the FCC. Development of more radiation hard detector neccessary for the second phase of the FCC.

Radiation damage of silicon detectors

The huge fluxes of charged and neutral particles in the inner detector cause damages of the semiconductor detectors.

Two mechanisms


- Damage of the surface and boundary surfaces of semiconductor detectors and of the read-out chips by ionizing radiation.
 As the ionization is a resersible process in a semiconductor, no permant damages of the crystal.
- Scattering off the atoms of the crystal lattice can cause atom displacements and other damages of the crystal lattice.

Convention

The damage of the substrate by scattering off the atoms is expressed as the damage of neutrons with 1 MeV energy.

Damages of the substrate

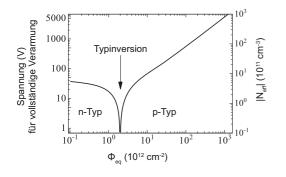
 Lattice atoms can be displaced by collisions with the radiation background leading to empty places and atoms on inter-lattice points as primary point defects.

- Most of the primary defects are instable and disappear by recombination.
- Due to their mobility primary point defects can build stable defect complexes with impurity atoms.

Consequences of substrate damages

Conduction band

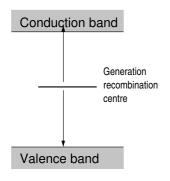
Donor (-)


Akceptor (-)

Valence band

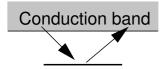
Creation of acceptor and donor centres

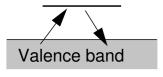
- Charged defects which act as acceptor or Donor centres.
- ⇒ Modification of the effective doping concentration.
- ⇒ Modification of the depletion region and the depletion voltage. Type inversion is possible.


Type inversion by acceptor and donor centres

Type inversion already after few years of operation at the LHC.

⇒ The value of the depletion voltage changes with time. After a long operation of the detectors, only partial depletion possible leading to loss of signal.

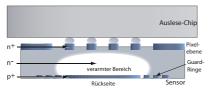

Consequences of substrate damages



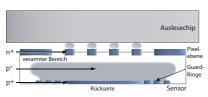
Creation of generation recombination centres

- Impurity levels in the middle of the band gap act as generation and recombination centres.
- generation centres increase the leakage current.
- ⇒ Increased detector noise and detector temperature.
 - Danger of destroying the detector by a chain reaction of a leakage current induced temperature increase and a temperature induced increase of the leakage current.

Consequences of substrate damages


Creation of trapping centres

- Trapping of electrons and hole in impurity levels.
- ⇒ Reduced life time and mean free path of the charge carriers.
- ⇒ Signal loss if the trapping takes longer than the creation of the signal.

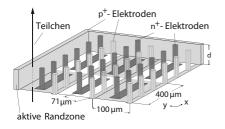

Measures to increase the radation hardness

Cooling of the sensors

- Damages of the substrate are temperature dependent.
- ⇒ Damages can be cured by heating up the crystal. But too long heating can convert harmless impurities to harmful impurities.
- \Rightarrow Second process can be suppressed by operating the sensors at low temperatures \sim -10 o C.

(a) n⁻-Substratdotierung vor der Bestrahlung.

(b) p⁻-Subatratdotierung nach der Bestrahlung.


n⁺-on-n- or n⁺-on-p sensors •

- After type inversion complete depletion no longer possible.
- ⇒ n⁺-on-n or n⁺-on-p sensoren to have the n⁺p layer on the side of the read-out electrode.

Measures to increase the radation hardness

Enrichment of the silicon substrate with oxygen

• Suppression or prevention of type inversion by enrichment of the silicon substrate with oxygen.

Thin sensors or 3-D pixel sensors

- Goal: Reduction of drift paths and acceleration of the charge collection to oppose trapping effects.
- Two possibilities: Thin planar sensors or 3D pixel sensors with column electrodes.

No lecture on December 2 because of conflicts with MPP internal meetings