Simulating Muon Filter for MUonE and MSSM Proton Collisions for Dark Matter Searches

LARA SRDOJEVIĆ

17.3.2025.

Contents

- Part I: Muon identification in the MUonE experiment
 - Anomalus magnetic moment of a muon
 - MUonE experiment
 - Muon filter
 - Simulating the performance of the muon filter
- Part II: Probing Dark Matter at the LHC: Monte Carlo Simulations in the MSSM
 - Introduction
 - Event generation: signal and leading background
 - Manual analysis
 - Machine learning
- Part III: Research interests and future work

Part I: Muon identification in the MUonE experiment

Anomalus magnetic moment of a muon

 $a_{\mu SM} = 116591810(43) \times 10^{-11}$

 $a_{\mu EXP} = 116592089(63) \times 10^{-11}$

[2]

$$\Delta a_{\mu} = 279(76) \times 10^{-11} = 3.7 \sigma$$
 [1]

$$a_{\mu SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{had}$$

The hadronic vacuum polarization - leading order hadronic contribution:

EPS-HEP Conference 2023., Presentation by Riccardo Nunzio Pilato, University of Liverpool

The Need for an Alternative Approach

Time-like approach

- Basic concepts:
 - unitarity and causality
 - Dispersion Relation and Optical Theorem
 - direct relation to data: total hadronic cross section $\sigma(e^+e^- \rightarrow had)$

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{\infty} \frac{ds}{s} \frac{1}{\pi} Im \Pi^{had}(s) K(s)$$

$$Im\Pi^{had}(s) = \frac{\alpha}{3}R_{had}(s),$$

$$R_{had}(s) = \frac{\sigma_{had}^0(e^+e^- \to had)}{4\pi\alpha^2/3s}$$

Lattice QCD

 Results have uncertainties of 2-3%, compared to 0.5-0.6% error from e⁺e⁻ measurements

The MUonE Experiment's Approach

MUonE experiment

- Aims at determining the leading hadronic contribution to the muon anomalous magnetic moment by measuring the effective electromagnetic coupling in the space-like region at low momentum transfer
- Using a 160 GeV muon beam at CERN, the experiment targets a precision of O(10^{-5}) in measuring the shape of the differential cross section of μ -e elastic scattering

Muon filter - Importance of Precise Particle Identification

- Location: downstream of the ECAL
- Structure: a thick absorber followed by tracking planes
- Role: particle identification (PID) and correcting for potential pion contamination in the muon beam

50

My Research – Simulations for the Muon Filter

- The main focus of the thesis: simulation of the performance of the muon filter using the *FairMUonE* software in conjunction with the *Bura* supercomputer
- 10⁶ events (10⁵ for Pion Contamination Study)
- Beam generator: MuonGunBeamProfile
- Interaction generator: MESMER elastic interaction

Angle Method

- Method for correct muon track extrapolation
- Main idea:
 - Take the distribution of muon angle differences and apply a cut-off interval of μ±σ on all of the angles reconstructed in the muon detector
 - Check whether the signal muon angle reconstructed in the muon detector is within this cut-off interval
- Deviation from zero in the angle difference for non-interacting muons is due solely to Multiple Coulomb Scattering (MCS) → the analysis informs about how much background falls into the MCS uncertainty region around the muon

Interacting

Muons

0.0

0.008

0.004

0.00

-0.00 -0.00 -0.00 -0.00 -0.00

Background

800

900

Non-Interacting Muons

,		
10 cm Iron	Probability	Uncertainty
Non-Interacting Muon Data, 1 Sigma	0.99937	4×10^{-5}
Cut-Off		
Non-Interacting Muon Data, 2 Sigma	0.99869	4×10^{-5}
Cut-Off		
Interacting Muon Data, 1 Sigma Cut-	0.99899	3×10^{-5}
Off		
Interacting Muon Data, 2 Sigma Cut-	0.99781	5×10^{-5}
Off		
Non-Interacting Muon Data, 1 Sigma	0.9986	4×10^{-4}
Cut-Off, Filter Relevant Events		
Non-Interacting Muon Data, 2 Sigma	0.9973	5×10^{-4}
Cut-Off, Filter Relevant Events		
Interacting Muon Data, 1 Sigma Cut-	0.9981	5×10^{-4}
Off, Filter Relevant Events		
Interacting Muon Data, 2 Sigma Cut-	0.996	7×10^{-3}
Off, Filter Relevant Events		

By comparing muon angles before and after the absorber, I achieved over **99% background rejection** with minimal muon loss.

Final correlation curve

Scenario	No Absorber	1 cm Fe	2 cm Fe	10 cm Fe
	(%)	(%)	(%)	(%)
Muon Filter Required	8.78764	8.992	9.085	9.012
Muon Filter Required, Correctly Identified Events	8.75795	8.968	9.050	8.970

Scenario	No Absorber	1 cm Fe	2 cm Fe	10 cm Fe
	(%)	(%)	(%)	(%)
Muon Filter Required	84.618	81.460	85.347	81.862
Muon Filter Required, Correctly Identified Events	83.7466	80.923	84.886	81.203

In **9% of all events**, the muon filter was crucial for identification. Without the filter, the ECAL alone correctly identified only **20% of ambiguous cases (θe < 5 mrad)**.

Part II: Probing Dark Matter at the LHC: Monte Carlo Simulations in the MSSM

Introduction

- Research Focus: Simulating proton-proton collisions within the MSSM framework.
- Scenario: Only light superparticles are a bino-like dark matter candidate (χ) and a nearly-degenerate slepton (Ĩ).
- Challenge: Traditional searches fail due to:
 - Soft leptons and small missing transverse energy (MET).
 - High background from standard model processes like tt and WZ decays.

• Our Approach:

- Investigate an alternative search strategy involving an additional radiated jet to provide transverse boost.
- Use **angular distributions** and other discriminatory variables to enhance signalbackground separation.

Event Generation and Simulation Strategy

Tools Used:

• MadGraph & Pythia8 for event generation, simulated on the HPC.

Signal Definition:

- Focus on opposite-sign, same-flavor dileptons + MET.
- Simulated with strict decay channels to make detection challenging.
- $qg (q\overline{q}) \rightarrow j\gamma^* / Z^* \rightarrow j\tilde{l}^*\tilde{l} \rightarrow j\chi\chi\bar{l}l$

Technical Parameters:

- Adjusted **xqcut** and **qcut** parameters for optimization.
- MSSM SLHA2 model used with:
 - Smuon mass = 110 GeV
 - Neutralino mass = 100, 90, 80, 70, 60, 50 GeV
 - All other particles decoupled.

Background Approach:

- Exclusive: Only backgrounds that directly mimic the signal (muonic decays enforced).
- Inclusive: Covers a wider phase space, ensuring a comprehensive background study.

• $pp \to jZ \to j\bar{\tau}\tau \to j\bar{\ell}\ell\bar{\nu}\nu\bar{\nu}_{\tau}\nu_{\tau},$

[5]

• $pp \to \bar{t}t(j) \to \bar{b}W^- bW^+(j) \to \bar{b}b\bar{\ell}\ell\bar{\nu}\nu(j),$

•
$$pp \to jZZ/jW^+W^- \to j\bar{\ell}\ell\bar{\nu}\nu, j\bar{\ell}\ell\bar{\tau}\tau (\to \bar{\ell}\ell\bar{\nu}\nu + \text{jets})$$

Event Selection and Analysis

- Goal: Separate signal from background by applying a series of event selection cuts.
- Three Sets of Cuts:
 - Primary Cuts: Define the event topology.
 - Secondary Cuts: Further reduce backgrounds, globally beneficial to all targeted mass splittings..
 - Tertiary Cuts: Optimize based on mass splitting (Δm = 10–60 GeV), using kinematic variables.
- Results: Shown in tables, demonstrating how signal-to-background separation improves.
- Analysis: Conducted using a custom program in MadAnalysis to track distributions and cross-section changes.

Selection	tīji	ττίί	Ziiii	ZZjj	WZjj	WWjj	S ¹¹⁰	S ¹¹⁰	S_{20}^{110}	S_{40}^{110}	S ¹¹⁰	S_{eo}^{110}
			- 5555				~10	~ 20	~ 30	~40	~ 50	~ 60
Matched Production	6.1×10^5	5.6×10^4	5.2×10^7	1.3×10^4	4.2×10^4	9.5×10^4	1.9×10^2	1.9×10^2	1.9×10^2	1.9×10^2	1.9×10^2	1.9×10^2
τ -veto	5.4×10^5	$3.0 imes 10^4$	5.1×10^7	1.2×10^4	4.0×10^4	8.9×10^4	1.9×10^2	1.9×10^2				
OSSF muon	3.5×10^3	4.3×10^2	6.0×10^5	3.2×10^2	5.8×10^2	5.1×10^2	3.9×10^1	6.8×10^{1}	$8.1 imes 10^1$	8.8×10^{1}	8.9×10^1	9.1×10^1
exactly 1 J $P_T > 30$	$6.6 imes 10^2$	2.6×10^2	7.1×10^4	9.4×10^1	1.5×10^2	1.1×10^2	7.6×10^0	1.3×10^1	1.6×10^1	1.7×10^{1}	1.7×10^{1}	1.8×10^1
Jet b-veto	1.9×10^2	2.5×10^2	7.0×10^4	8.0×10^{1}	1.4×10^2	1.1×10^2	7.5×10^0	1.3×10^1	1.6×10^1	$1.7 imes 10^1$	1.7×10^{1}	1.8×10^1
$E_T > 30 \text{ GeV}$	1.6×10^2	1.8×10^2	8.9×10^3	$3.3 imes 10^1$	6.6×10^1	$9.2 imes 10^1$	$6.3 imes 10^0$	$1.0 imes 10^1$	1.3×10^1	$1.4 imes 10^1$	1.5×10^1	1.6×10^1

Selection	$t\bar{t}jj$	$\tau \tau j j$	Z_{jjjj}	ZZjj	WZjj	WWjj	S_{10}^{110}	S_{20}^{110}	S_{30}^{110}	S_{40}^{110}	S_{50}^{110}	S_{60}^{110}
$m_{\ell\ell} \not\in M_Z \pm 10~{\rm GeV}$	1.4×10^2	1.8×10^2	6.2×10^2	2.0×10^0	1.0×10^1	7.9×10^{1}	6.0×10^0	9.2×10^0	1.1×10^1	1.2×10^1	1.3×10^1	1.4×10^1
$\cos\theta^*_{\ell_1,\ell_2} < 0.5$	8.1×10^1	1.6×10^2	4.7×10^2	1.4×10^{0}	6.7×10^0	$4.5 imes 10^1$	4.8×10^0	6.9×10^0	$8.0 imes 10^0$	9.0×10^0	$9.5 imes 10^0$	1.0×10^1
$m_{\tau\tau} > 125~{\rm GeV}$	$2.7 imes 10^1$	2.3×10^1	8.7×10^{1}	3.0×10^{-1}	1.4×10^0	1.4×10^{1}	$3.0 imes 10^0$	3.4×10^0	$3.6 imes 10^0$	$3.9 imes 10^0$	4.1×10^0	$4.3 imes 10^0$
$E_T > 125 \text{ GeV}$	2.9×10^{0}	$6.6 imes 10^{-1}$	0	1.5×10^{-2}	2.2×10^{-1}	2.3×10^{0}	5.1×10^{-1}	5.8×10^{-1}	$6.6 imes 10^{-1}$	7.1×10^{-1}	7.9×10^{-1}	8.9×10^{-1}
Jet P_T $> 125~{\rm GeV}$	1.1×10^0	$6.6 imes 10^{-1}$	0	1.1×10^{-2}	1.9×10^{-1}	1.7×10^0	4.9×10^{-1}	5.2×10^{-1}	5.2×10^{-1}	4.6×10^{-1}	4.5×10^{-1}	$4.5 imes 10^{-1}$

Selection	$t\bar{t}jj$	$\tau \tau j j$	ZZjj	WZjj	WWjj	S_{10}^{110}	S_{20}^{110}	S_{30}^{110}	S^{110}_{40}	S_{50}^{110}	S_{60}^{110}
	Small Mass Gap Optimization										
$1.0 < P_T^j \div E_T < 1.3$	4.5×10^{-1}	$5.5 imes 10^{-3}$	2.7×10^{-3}	6.2×10^{-2}	$6.6 imes 10^{-1}$	$4.2 imes 10^{-1}$	$3.0 imes 10^{-1}$	2.4×10^{-1}	1.8×10^{-1}	1.6×10^{-1}	1.4×10^{-1}
$\Delta \phi(\not\!\!\! E_T,j) \div \pi > 0.95$	1.8×10^{-1}	$5.5 imes 10^{-3}$	2.2×10^{-3}	2.7×10^{-2}	$3.8 imes 10^{-1}$	$4.0 imes 10^{-1}$	$2.3 imes10^{-1}$	1.7×10^{-1}	$9.6 imes 10^{-2}$	$7.7 imes 10^{-2}$	$6.2 imes 10^{-2}$
Events at $\mathcal{L}=300~{\rm fb}^{-1}$	52.7	1.7	0.7	8.1	113.6	120.0	69.0	51.0	28.8	23.1	18.6
$S \div (1 + B)$	-	-	-	-	-	0.68	0.39	0.29	0.16	0.13	0.10
$S \div \sqrt{1+B}$	-	-	-	-	-	9.0	5.2	3.8	2.2	1.7	1.4
					· · · · · ·						

[5]

Next Steps – Machine Learning and Neural Networks

- No simple set of cuts can perfectly separate signal from background.
- Traditional cut-based methods rely on trial and error.
- Machine learning, especially **neural networks**, can optimize selection by recognizing complex patterns in kinematic variables.
- The goal is not only better event selection but also understanding why certain cuts work.
- I am currently learning about machine learning techniques to apply them in this analysis.

Part III: Research interests and future work

Research interests and future work

- Passion for Quantum Field Theory, Particle Physics, General Relativity, and Cosmology.
- Interest in scattering amplitudes, dark matter, dark energy, and fundamental interactions.
- Aim to contribute to theoretical physics.
- Plan to stay engaged with MUonE and Ljubljana research while focusing on PhD work.

Bibliography

[1] T. Aoyama et al. "The anomalous magnetic moment of the muon in the standard model". In: Physics Reports (2020). Preprint.

[2] F. Jegerlehner. "The Anomalous Magnetic Moment of the Muon". In: Second Edition. Springer, 2017.

[3] Jegerlehner, F. (2015). Leading-order hadronic contribution to the electron and muon g-2. *The European Physical Journal Conferences, 118,* 01016. <u>https://doi.org/10.1051/epjconf/201611801016</u>

[4] The MUonE Collaboration. Letter of Intent: The MUonE Project. CERN-SPSC-2019-026 / SPSC-I-252. European Organization for Nuclear Research, June 2019.

[5] Dutta, B., Fantahun, K., Fernando, A., Ghosh, T., Kumar, J., Sandick, P., Stengel, P., & Walker, 2017, Probing Squeezed Bino-Slepton Spectra with the Large Hadron Collider, arXiv:1706.05339v2

APPENDIX I: MUONE EXPERIMENT

• $acceptance = \frac{reconstructed}{generated}$

Configuration	Acceptance Station 1	Acceptance Muon Detector
No Absorber	$99.85 \pm 0.01\%$	$99.812 \pm 0.009\%$
$1 \mathrm{~cm}$ Iron	$99.85 \pm 0.02\%$	$99.80 \pm 0.02\%$
$2 \mathrm{~cm}$ Iron	$99.85 \pm 0.02\%$	$99.80 \pm 0.01\%$
$10 \mathrm{~cm}$ Iron	$99.85 \pm 0.02\%$	$99.76 \pm 0.02\%$

No Absorber	Interacting outside Absorber	Non-Interacting	Interacting in Absorber
Reconstruction Inefficiency	$27 \pm 4\%$	$4 \pm 1\%$	$0 \pm 0\%$
Sensor Inefficiency	$47 \pm 4\%$	$10 \pm 2\%$	$0 \pm 0\%$
Zero Hits (Escape)	$9 \pm 4\%$	$3 \pm 2\%$	$0 \pm 0\%$
10 cm Iron	Interacting outside Absorber	Non-Interacting	Interacting in Absorber
Reconstruction Inefficiency	$14 \pm 4\%$	1 ± 1%	$27 \pm 4\%$
Sensor Inefficiency	$30 \pm 4\%$	$7 \pm 1\%$	$9 \pm 1\%$
Zero Hits (Escape)	$8 \pm 2\%$	$3 \pm 03\%$	$2 \times 10^{-7} \pm 4 \times 10^{-7}\%$

Increasing absorber thickness slightly reduced the number of detected muons in muon detector, but most losses were due to **sensor inefficiency**, not the absorber layer itself.

Muon and background particle angle analysis

Muon Angles in Muon Detector Interacting Muons: Mean = 1.503570 Std Dev = 0.952561 Entries = 922750 Non-Interacting Muons: 25000 Mean = 1.523161 Std Dev = 0.971874 Entries = 67515 20000 15000 10000 5000 0 $\begin{array}{ccc} 5 & 6 \\ \theta_{\mu} \text{ in mrad} \end{array}$ 2 3

Material	Muon Type	$\mathbf{Mean} \; / \; \mathbf{mrad}$	Std Dev / mrad
No Absorber Interacting		1.5	0.9
	Non-Interacting	1.5	0.9
1 cm Iron	Interacting	1.5	0.9
	Non-Interacting	2.0	1.0
2 cm Iron	Interacting	1.5	0.9
	Non-Interacting	2.0	1.0
cm Iron	Interacting	2.0	1.0
	Non-Interacting	2.0	1.0

Description	No Absorber	1 cm Iron	2 cm Iron	10 cm Iron
Interacting muons	$85.8\pm0.2\%$	$86.4\pm0.3\%$	$87.5\pm0.1\%$	$93.2\pm0.1\%$
Muons interacting in Absorber	-	$7.3\pm0.1\%$	$14.1\pm0.1\%$	$53.3\pm0.3\%$
Non-interacting muons	$14.5\pm0.2\%$	$13.6\pm0.3\%$	$12.5\pm0.1\%$	$6.8\pm0.1\%$
Interacting muons, reconstructed in muon detector	$85.3\pm0.2\%$	$86.3\pm0.3\%$	$87.3\pm0.1\%$	$93.0\pm0.1\%$
Muons interacting in Absorber, reconstructed in muon detector	-	$7.3\pm0.1\%$	$14.1\pm0.1\%$	$53.2\pm0.3\%$
Non-interacting muons, reconstructed in muon detector	$14.5\pm0.2\%$	$13.5\pm0.3\%$	$12.5\pm0.1\%$	$6.7\pm0.1\%$

Histogram	$\mathbf{Mean} \; / \; \mathbf{rad}$	Std Dev / rad	Entries
Before; No Absorber	0.03	0.03	34099
Before; 1 cm Iron	0.04	0.02	18453
Before; 2 cm Iron	0.04	0.02	10728
Before; 10 cm Iron	0.04	0.02	237
Inside; No Absorber	0.0	0.0	0
Inside; 1 cm Iron	0.04	0.02	40195
Inside; 2 cm Iron	0.04	0.02	55481
Inside; 10 cm Iron	0.04	0.02	81491

Absorbers reduce background from particles produced before them but also generated new background internally.

• Main source of background: e^+ and e^- from pair production process

Angle method

	No Absorber	1 cm Iron	2 cm Iron	10 cm Iron
Lost Interacting Muons	0.0025%	5.7833%	5.9584%	6.0181%
Lost Non-Interacting Muons	0.0018%	4.8270%	5.2950%	5.0040%
Background within line cut-off	5.1232%	0.9102%	0.7893%	0.5262%

Vertexing Method for background rejection

- Background particles reconstructed in the muon detector but originating in the absorber can be traced back to their origin, or vertex → If the vertex lies within the absorber, the corresponding track is identified as background and rejected.
- This method works only for background particles generated within the absorber.

- The percentage of usable tracks in the configuration without an absorber is high, suggesting that most of the background tracks within the cut-off originate from the ECAL
- As the thickness of the absorber increases, the percentage of usable tracks rises
- While the no-absorber setup shows the highest percentage of eliminated background tracks, it is essential to consider the overall data when evaluating performance

Metric	No Absorber	1 cm Iron	2 cm Iron	10 cm Iron
Percentage of Usable Tracks	98.1245~%	41.8706~%	$44.7911\ \%$	64.9742~%
Muon-Interaction Error	$44.3627\ \%$	$48.1649\ \%$	42.6244~%	35.5949~%
Track Elimination Efficiency	16.2383~%	13.4586~%	13.4586~%	9.1120~%

Pion contamination study

- Goal: to determine the absorber layer ability to stop beam pions from reaching the muon detector.
- Updated version of FairMUonE
- 10^5 events
- Square-shaped pionic beam generator
- Future work: more realistic beam profile, consisting of a mix of muons and pions

Absorber Configuration	Station 1	Muon Detector
No Absorber	$96.2\pm0.2\%$	$41.0\pm0.3\%$
1 cm Iron	$96.2\pm0.2\%$	$38.7\pm0.3\%$
2 cm Iron	$96.2\pm0.2\%$	$37.1\pm0.4\%$
10 cm Iron	$96.2\pm0.1\%$	$24.8\pm0.4\%$

