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The Wavefunction
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Cosmological Observables

We expect that correlations of the temperature at different points in
the Cosmic Microwave Background (CMB), (0T (x1)0T (x2)...0T (%))
are related to quantum fluctuations of a scalar field during inflation,

(06(x1)0p(x2)...00(xn))

The correlation functions of the fields at the end of inflation, can be defined as:

d9(0)
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dp(x2) 7=7

v [5 qb] is the vacuum wavefunction.
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Wavefunction

The WaVEfU_I’ICtiOH can be deﬁned as.: Colored scalars with cubic interactions

°¢(0) - 1 A3(7)
T[5¢] = / DlleiSlel  S[g] = [ dlady = Tr (99) = 2y
b= [ Dl [ tin 5 007 225

/ A3s(n) = Aza(n)  a(n) =n~(1Fe)

Bunch-Davies condition

e = —1 Flat-space
=10 dS

And it can be computed perturbatively, as follows:

B[5¢] = exp Z% / [T s o (k) ™ E o (S1F)
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Wavefunction coefficient
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Wavefunction

dp(x2) 7=7

0¢(x3)
w7

Each wavefunction coefficient as an integral form of the type:

0
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GB,8(|ki|7ns)
GB,B(Er;1s,ns
G B)@( E ks 7’}) p— eiE kT Bulk-to-Boundary propagator
1 : . ,
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k

Bulk-to-Bulk propagator

For FLRW backgrounds, it is possible to perform the time integration by Fourier transforming the couplings,
trading the time integration by a integration over the total external energy entering each site:

+00 _
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Wavefunction: Diagrammatic Expansion

After performing the time integration, at tree-level, ¥g is a rational function of the norm of the momenta:
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Singularities of the Wavefunction

Every singularity of the integrand of the wavefunction, is directly associated with a subprocess.
Diagrammatically, these subprocesses are represented as tubes in the graph:
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The residue of the wavefunction on the total energy pole is the corresponding scattering amplitude!

ResEt:O\Ifn — An

0) 1
Example: Res ¢, = - = S5 S
P Be=0" T (|Fy| + [Kal)? + (Fy + k)2
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Integrand from Russian Dolls

A Russian-Doll/ Tubing is a maximal collection of non-overlapping tubes. The integrand of a given
diagram is the sum over all possible tubings one can draw:

. . . . . . Five-point chain topology

Six-point chain topology

Six-point star topology
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Kinematics From Sub-polygons
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Wavefunction From Sub-polygons

The wavefunction can be written as a sum over all maximal sets of non-overlapping sub-polygons.

This allows us to write the following form for the wavefunction:

1
v=> |l 7
P PCP

/

Maximal sets of non-overlapping sub-polygons.




The ABHY Associahedron
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Associahedron

The associahedron encodes the combinatorial information of triangulations of polygons:

Consider a set of cords, C. We say that C'is a refinement of C, if C C C". Then:

C"is aface of Cif C C ('
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Amplitudes from the Associahedron

The ABHY associahedron is carved out by the inequalities X; ; > 0. One can embed it in (n — 3)-dimensional

space, by picking a basis triangulation, e.g. {X 3, X 4, X; 5}, and write the remaining X; -variables in terms of
the base X’s, and the non-planar variables:

Cij = Xij+Xip1j41 — Xiv1; — Xi j+1

3
/ !/,
By fixing the ¢’s to be positive, one obtains the (n — 3)-dimensional iy, " k3
embedding of the associahedron. ) / K A
/
-7 i X13 —
ka4
k1 X4 - -t - -
The amplitude is given by the canonical form of the polytope.
1 X1 3
1 E - P N ]25
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triang. T X,; ;€T
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Cosmohedra
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Cosmohedra

The cosmohedron captures the combinatorics of the full wavefunction!

N

&

Considering that P is a collection of non-overlapping sub-polygons, then the cosmohedron has faces such that:

P'is a faceof Pif P C P’
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Cosmohedra: Embedding

0 X3

The cosmohedron will be carved out by the inequalities:

E X C Z € C Set of non-overlapping cords, X1

partial triangulation.

CGC\/ 2

Where the constants need to satisfy inequalities: €c + €c’ < €cuc’ + €cnc’

X14

. . . , Cosmog
If C n C'is entirely to left, or right of C, C’, then: €c + €c’ = €cuc’ + €cnc’
The above equalities are automatically satisfied if we impose €c = Z Op
Pof C b-pol in C.
And the above inequalities are satisfied if we impose the following: \_Jsu .
True if imposing the
5P —|_5P’ < 5PﬂP’ —I_(SPUP’ . parameterization 5P _ 5(n_ #P)2

Example: 2 5+ 2 5 < 2
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Cosmohedra: Counting

Associahedron

2

#Facets(Assoc),, — %

4?’L
#Vertices(Assoc),, —
n3/2\/7
codim-1 | codim-2 | codim-3 | codim-4 | codim-5 | codim-6
4-points 2 — — — — —
5-points 5) 5) — — — —
6-points 9 21 14 — — —
7-points 14 56 84 42 — —
8-points 20 120 300 330 132 —
9-points 27 225 825 1485 1287 429
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#Facets(Cosmo),, —

Cosmohedron

C

n3/2

(34 V8)"

#Vertices(Cosmo),, — cn'n!

codim-1 | codim-2 | codim-3 | codim-4 | codim-5 | codim-6
4-points 2 — — — — —
5-points 10 10 — — — —
6-points 44 114 72 — — —
7-points 196 952 1400 644 — —
8-points 902 7116 18040 18528 6704 —
9-points 4278 50550 194616 | 332664 | 262728 78408




Outlook

Associahedron < > Particle/String Amplitudes

[N. Arkani-Hamed, S. He, T. Lam, 19’]

Scalars > Pions and Gluons

[N. Arkani-Hamed, Q. Cao, J. Dong, C. Figueiredo, S. He, 23]

What about Cosmology?
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Thank You!



