

MAX-PLANCK-INSTITUT FÜR PHYSIK

Cosmohedra

Francisco Vazão

Based on 2412.19881 with N. Arkani-Hamed and C. Figueiredo

IMPRS Colloquium, 13th of March, 2025

Outline

- The Wavefunction.
- The ABHY Associahedron.
- Cosmohedra.

The Wavefunction

Inflation

Inflationary models

Cosmological Observables

We expect that correlations of the temperature at different points in the Cosmic Microwave Background (CMB), $\langle \delta T(\mathbf{x}_1) \delta T(\mathbf{x}_2) ... \delta T(\mathbf{x}_n) \rangle$ are related to quantum fluctuations of a scalar field during inflation, $\langle \delta \phi(\mathbf{x}_1) \delta \phi(\mathbf{x}_2) ... \delta \phi(\mathbf{x}_n) \rangle$

The correlation functions of the fields at the end of inflation, can be defined as:

$$\langle \delta \phi(\mathbf{x}_1) \delta \phi(\mathbf{x}_2) \dots \delta \phi(\mathbf{x}_n) \rangle = \int_{\delta \phi(-\infty)}^{\delta \phi(0)} [\mathcal{D} \delta \phi]^n \delta \phi(\mathbf{x}_1) \delta \phi(\mathbf{x}_2) \dots \delta \phi(\mathbf{x}_n) |\Psi[\delta \phi]|^2$$

 $\Psi[\delta\phi]$ is the vacuum wavefunction.

Wavefunction

The wavefunction can be defined as:

Colored scalars with cubic interactions

$$\Psi[\delta\phi] = \int_{\delta\phi(-\infty(1-i\epsilon))}^{\delta\phi(0)} \mathcal{D}[\varphi] e^{i\mathcal{S}[\varphi]}$$

Bunch-Davies condition

$$\mathcal{S}[\phi] = \int d^d x d\eta \, \frac{1}{2} \operatorname{Tr} \left(\partial \phi\right)^2 - \frac{\lambda_3(\eta)}{3} \operatorname{Tr} \phi^3$$

$$\lambda_3(\eta) \equiv \lambda_3 a(\eta) \qquad a(\eta) = \eta^{-(1+\varepsilon)}$$

 $\varepsilon = -1$ Flat-space $\varepsilon = 0$ dS

And it can be computed perturbatively, as follows:

$$\Psi[\delta\phi] = \exp\left\{\sum_{n\geq 2} \frac{1}{n!} \int \prod_{i=1}^{n} d^{d}k_{i} \,\delta\phi_{i}(k_{i}) \overline{\psi^{(n)}[\vec{k}_{i}]} \delta^{d}\left(\sum_{i} \vec{k}_{i}\right)\right\}$$
Wavefunction coefficient
$$\psi^{(n)} = \sum_{\mathcal{G}} \psi_{\mathcal{G}}$$

Wavefunction

For FLRW backgrounds, it is possible to perform the time integration by Fourier transforming the couplings, trading the time integration by a integration over the total external energy entering each site:

In FLRW:
$$\lambda_3(\eta_s) = \int_{-\infty}^{+\infty} d\omega_s e^{i\omega_s \eta_s} \lambda_3(\omega_s)$$

Wavefunction: Diagrammatic Expansion

After performing the time integration, at tree-level, $\psi_{\mathcal{G}}$ is a rational function of the norm of the momenta:

$$\begin{split} \vec{k}_{1} & |\vec{k}_{2}| & |\vec{k}_{3}| & |\vec{k}_{4}| \\ \eta_{1} & |\vec{k}_{1}| + \vec{k}_{2}| \\ \eta_{1} & |\vec{k}_{1}| + \vec{k}_{2}| \\ \eta_{2} & |\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| \\ (|\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{2}| \\ \eta_{2} & |\vec{k}_{1}| + |\vec{k}_{2}| \\ \eta_{1} & |\vec{k}_{2}| & |\vec{k}_{3}| & |\vec{k}_{4}| \\ (|\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}|) \\ (|\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{1}| + \vec{k}_{2}| \\ (|\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}|) \\ (|\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{1}| + \vec{k}_{2}| \\ (|\vec{k}_{3}| + |\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| \\ (|\vec{k}_{3}| + |\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{3}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| \\ (|\vec{k}_{3}| + |\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| + \vec{k}_{3}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{1}| + \vec{k}_{2}| \\ (|\vec{k}_{3}| + |\vec{k}_{1}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{1}| + \vec{k}_{2}| + |\vec{k}_{3}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{5}| \\ (|\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{2}| + |\vec{k}_{3}| + |\vec{k}_{4}| + |\vec{k}_{3}| \\ (|\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| \\ (|\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| \\ (|\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| + |\vec{k}_{5}| + |\vec{k}_{4}| +$$

Singularities of the Wavefunction

Every singularity of the integrand of the wavefunction, is directly associated with a subprocess. Diagrammatically, these subprocesses are represented as tubes in the graph:

The residue of the wavefunction on the total energy pole is the corresponding scattering amplitude!

 $\operatorname{Res}_{E_t=0} \Psi_n = \mathcal{A}_n$ $\operatorname{Res}_{E_t=0} \psi_4^{(0)} = \frac{1}{-(|\vec{k}_1| + |\vec{k}_2|)^2 + (\vec{k}_1 + \vec{k}_2)^2}$

Example:

Integrand from Russian Dolls

A Russian-Doll/Tubing is a maximal collection of non-overlapping tubes. The integrand of a given diagram is the sum over all possible tubings one can draw:

Kinematics From Sub-polygons

3

 $(\vec{k}_{3}$ \vec{k}_2 $\mathbf{2}$ 4 Every graph is dual to a triangulation of the momentum polygon. For the scattering amplitude, the dual variables are $X_{i,j} = (\vec{k}_i + \vec{k}_{i+1} + \ldots + \vec{k}_{j-1})^2$. $|\vec{k}_4|$ \vec{k}_1 For the wavefunction, the dual variables will be the perimeters of the sub- X_{14} polygons of the momentum polygon. 5 X_{15} 1 $\dot{k_6}$ κ_5 6 3 3 3 (\vec{k}_{3}) \vec{k}_3 (\vec{k}_{3}) \vec{k}_2 k_2 k_2 2224 P_{123} P_{123} \vec{k}_4 $|\vec{k}_4|$ P_{134} \vec{k}_4 P_{12345} \vec{k}_1 \vec{k}_1 P_{1345} \vec{k}_1 P_{145} 551 1 1 P_{156} P_{156} P_{156} \vec{k}_6 \vec{k}_6 κ_5 \vec{k}_6 k_5 κ_5 6 6 6 \vec{k}_1 k_6 k_5 P_{123} P_{134} P_{145} P_{123} P_{156} P_{156} P_{1345} P_{12345} P_{156} $P_{123} = |\vec{k}_1| + |\vec{k}_2| + |\vec{k}_1 + \vec{k}_2|$ $P_{1345} = |\vec{k}_3| + |\vec{k}_4| + |\vec{k}_1 + \vec{k}_2| + |\vec{k}_5 + \vec{k}_6|$ $P_{12345} = |\vec{k}_1| + |\vec{k}_2| + |\vec{k}_3| + |\vec{k}_4| + |\vec{k}_5 + \vec{k}_6|$

5

Wavefunction From Sub-polygons

The wavefunction can be written as a sum over all maximal sets of non-overlapping sub-polygons.

This allows us to write the following form for the wavefunction:

$$\Psi = \sum_{\mathbf{P}} \prod_{P \subset \mathbf{P}} \frac{1}{\mathcal{P}_P}$$
 Maximal sets of non-overlapping sub-polygons.

The ABHY Associahedron

Associahedron

The associahedron encodes the combinatorial information of triangulations of polygons:

Consider a set of cords, *C*. We say that *C*' is a refinement of *C*, if $C \subset C'$. Then:

C' is a face of C if $C \subset C'$

Amplitudes from the Associahedron

The ABHY associahedron is carved out by the inequalities $X_{i,j} \ge 0$. One can embed it in (n - 3)-dimensional space, by picking a basis triangulation, *e.g.* { $X_{1,3}, X_{1,4}, X_{1,5}$ }, and write the remaining $X_{i,j}$ -variables in terms of the base X's, and the non-planar variables:

$$c_{i,j} = X_{i,j} + X_{i+1,j+1} - X_{i+1,j} - X_{i,j+1}$$

By fixing the c's to be positive, one obtains the (n - 3)-dimensional embedding of the associahedron.

The amplitude is given by the canonical form of the polytope.

$$\mathcal{A}_n(X_{i,j}) = \sum_{\text{triang.}} \prod_{\mathcal{T} X_{i,j} \in \mathcal{T}} \frac{1}{X_{i,j}}$$

Cosmohedra

Cosmohedra

The cosmohedron captures the combinatorics of the full wavefunction!

Considering that *P* is a collection of non-overlapping sub-polygons, then the cosmohedron has faces such that:

P' is a face of P if $P \subset P'$

Cosmohedra

Cosmohedra: Embedding

20

Cosmohedra: Counting

Associahedron

$$\# \text{Facets}(\text{Assoc})_n \to \frac{n^2}{2}$$

$$\#$$
Vertices(Assoc)_n $\rightarrow \frac{4^n}{n^{3/2}\sqrt{\pi}}$

	codim-1	codim-2	codim-3	codim-4	codim-5	codim-6
4-points	2					
5-points	5	5				
6-points	9	21	14			
7-points	14	56	84	42		
8-points	20	120	300	330	132	
9-points	27	225	825	1485	1287	429

Cosmohedron

$$\#$$
Facets(Cosmo)_n $\rightarrow \frac{c}{n^{3/2}}(3+\sqrt{8})^n$

$$\#$$
Vertices $($ Cosmo $)_n \to cn^4n!$

	codim-1	codim-2	codim-3	codim-4	codim-5	$\operatorname{codim-6}$
4-points	2					
5-points	10	10				
6-points	44	114	72			
7-points	196	952	1400	644		
8-points	902	7116	18040	18528	6704	
9-points	4278	50550	194616	332664	262728	78408

What about Cosmology?

Thank You!