Construction and Test of Muon Drift Tube Chambers for High Counting Rates

Philipp Schwegler

Max-Planck-Institut für Physik

IMPRS Workshop, 24th January 2011

Outline

Introduction

Test Beam Measurements and High-Rate Tests

The ATLAS Muon Spectrometer

Demands on the Muon Spectrometer:

- Momentum resolution $\frac{\Delta \rho_{\rm T}}{\rho_{\rm T}} < 10$ % for muons up to 1 TeV
- Tracking efficiency > 90 %

The ATLAS Monitored Drift Tube Chambers

charged particle ionizes gas along its path electrons drift in electric field towards the wire avalanche multiplication close to the anode wire ($\approx 150\,\mu m)$

measurement of charge arrival time t at the anode wire

determine drift radii r(t) and fit track segment

MDT chamber parameters:

- Gas Mixture: Ar/CO₂ (93/7)
- Max. drift time: ≈ 700 ns
- Single-tube resolution: 80 μm
- Track reconstruction accuracy: 35 µm

Problems at High Background Rates

Background neutrons and γ 's from secondary reactions in shielding and other detector components cause drop of efficiency and spatial resolution.

detector occupancy = hit rate \times maximum drift time (\approx 700 ns)

LHC Luminosity Upgrade Plan

- Upgrade of the LHC luminosity over the coming decade to $5 \times$ nominal luminosity: $\mathcal{L} = 5 \cdot 10^{34} \, cm^{-2} s^{-1}$
- Background rate expected to increase proportional to luminosity increase

 \Rightarrow Background rate capability exceeded in the inner forward region (Small Wheel) of the muon spectrometer

nominal LHC luminosity: 30 65 55 35 160 50 50 35 160 50 50 150 50 50 1700 50 50

Expected rate in Hz/cm² at

LHC Luminosity Upgrade Plan

- Upgrade of the LHC luminosity over the coming decade to $5 \times$ nominal luminosity: $\mathcal{L} = 5 \cdot 10^{34} \, cm^{-2} s^{-1}$
- Background rate expected to increase proportional to luminosity increase
- \Rightarrow Background rate capability exceeded in the inner forward region (Small Wheel) of the muon spectrometer

Expected rate in Hz/cm^2 at 5× nominal LHC luminosity:

Reducing the Tube Diameter

Reducing the tube diameter from 30 to 15 mm:

- $7 \times$ lower occupancy due to
 - shorter maximum drift time (factor 3.5)
 - smaller tube diameter (factor 2)
- More tube layers in the same volume ⇒ better tracking efficiency

New Drift Tube Chamber Design

- trapezoidal shape
- 3 different tube lengths
- 2×8 tube layers
- 1152 tubes in total

Construction of a Full Scale Prototype Chamber

Drift Tube Production and Tests

- Assembly in clean room
- 1200 tubes produced in 3 weeks, manpower 3 people
- Tubes tested for correct wire tension, gas tightness and sustaining high-voltage
- Overall failure rate \approx 7% decreased to \approx 1% later

Construction of a Full Scale Prototype Chamber

glued multilayers of drift tubes

high-voltage distribution boards

front-end read-out electronics

Test Beam Measurements

180 GeV Muon Beam at CERN

Goals:

- First operation of the prototype chamber
- Optimization of the operating parameters
- Measurement of the spatial resolution and the efficiency without background radiation

Test Beam Measurements

180 GeV Muon Beam at CERN

Goals:

- First operation of the prototype chamber
- Optimization of the operating parameters
- Measurement of the spatial resolution and the efficiency without background radiation

Test Beam Measurements

Results

Stable operation of the prototype chamber in the test beam for one week:

- More than 30 million events recorded
- No high-voltage or electronic noise problems

High-Rate Tests

CERN Gamma Irradiation Facility (GIF)

Goal: Measurement of spatial resolution and efficiency as a function of the background counting rate.

Challenges:

- $\bullet~$ No muon beam in the GIF \rightarrow have to use cosmic muons
- Spatial resolution dominated by multiple scattering and track extrapolation uncertainties

High-Rate Tests

Results

- Efficiency measurement shows good agreement with expectancy
- Resolution measurement not yet possible, need better trigger acceptance and better tracking

Summary and Conclusions

- Inner forward regions of ATLAS muon spectrometer have to be replaced for high luminosity upgrades of the LHC
- Monitored Drift Tubes are proven and well tested technology for high counting rates
- Successful construction and operation of a full-scale prototype chamber with 15 mm diameter drift tubes
- Efficiency measurements with and without background radiation as expected
- Spatial resolution without background radiation as expected
- 15 mm diameter drift tubes are good candidates for an upgrade of the *Small Wheel*

Outlook

This Year

- Measurement of spatial resolution with background radiation
- Construction of four MDT chambers with 15 mm diameter drift tubes for ATLAS

Questions!?

Backup

A Rough LHC Luminosity Upgrade Outlook

Backup

Spatial Resolution vs. Rate

