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@ General supersymmetric solution of a N/ =2, D = 5 model
with term
ANtr(RAR)

@ Interpretation: SUGRA as non-renormalizable effective theory
@ Motivation: e.g. S = klogQ

A
Bekenstein-Hawking S = )

Wald S o dd 2x /|| <€V T
6 Rur/pa
[Castro et al. String theory effects on flve—dlmenSIonal black-hole physics]
@ Another motivation: AdS/CFT

gravity side ‘ SU(N) side
higher orders in curvature ‘ 1/N effects

[Cremonini et al. Black holes in five-dimensional gauged supergravity
with higher derivatives]
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N =2, D = 5 supergravity with vector multiplets

@ Pure gravity
o bosons: e
o fermions: v,
ny + 1 gauge fields G = U(1)™v !
o bosons: AL, Mm!
o fermions: Q”

Bosonic action: S = 1z [ d°x\/|g|L

L= —R=Gy (3Fu, F" = VuM' VM) 4 S e 7T Fl o AT

27 pv 24 pvt po’ T
o Very special geometry constraint & graviphoton
I'pgd ppK I'pgd aK
%CUKM M M™ =1 Agr.ph. X C[JKM M-’ A

@ Motivation: dimensional reduction from D = 11 on Calabi-Yau
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Off-shell formalism

String theory calculations — supersymmetry considerations
Disentangle SUSY algebra and EOM's — off-shell formalism
Drawback — auxiliary fields D, vu,,,x"

Resulting lagrangian: £ = Lo+ L1

Lo=iDN —1) = }N +3)R+ (BN +1)vV2 +2Njv - F'+
+ Ny (%F’ - Lom! . aMJ) +

1 1 vpoTr Al £J K
+ﬂfCU E'u P A,U,FI/pFUT
{16 eadeeA’ Chetg Cye fe supersymmetric completion}

@ L1 encodes one-loop string corrections
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Modified very special geometry constraint

@ Let us focus on D-terms:

_1 et
L=3DN -1+ 60( M'D+v- F>

1
N. ?CUKM MJMK

@ Equation of motion of D field

N = 1—% 5(/\/IDJFV F)
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BPS conditions

some fraction of
supersymmetry < Je(x)#0 such that
is preserved

1 1
S, = {V# + Evab%ab - 3vab'y“fyab} e=0
4
ox = {D - 27C’Vabvavbc - 2'Yaeabcdevbcvde + g(v ) ’7)2} e=0
I — 1 I _ab 1 i i 1 I, ab
0 = ——a:Fsbﬂ/ — éfy é%iAﬂ —'E§A4 V" %Yab ¢ € = 0
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Spinorial geometry techniques

e Killing spinor equation: Ve 4+ Qe =0 or Oe =0
@ Systematic study:

@ find the orbits of Spin(1,4) on the spinor module A
@ determine a standard representative for each orbit
© exploit invariance under LLT's to cast € in standard form:

exp { IAP(x)7ap | €(x) = €(x)

@ choose a basis for spinor module: A = span(A1, A2, Az, M)
@ write down Killing equation in components:

0= (Vetdt) Ot = ZC/\ = (=0

@ study geometrical properties of 0-,1-,2-forms constructed out
of the Killing spinor
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Orbits and k-forms

o Standard representatives (1) = S.7_; Gi\; # 0):
q(¥) =G> + |G — 1G> — |Gl
Va@) i if g(v) >0
Y~ g AL+ A3 if () =0
V=a() A3 if q(4) <0
@ Killing spinors to be studied
S(x) = e®PIN ()% = Mg, e(x)% = A1 + A
@ 0-,1-,2-forms out of spinor bilinears

oy =, Qly=nd d', Q=3 Tyud dx Adx”

@ real parametrization

Qi =¢is | QU

(0 — € 1 = 2% ) [9(2)]ij = Zi:l X k) [U(k)]ij
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BPS conditions for €9 = e?1 and ¢ = e®¢

Killing spinor 54 = e?1:
e V*is Killing and timelike = V* = (9/0t)*
o ds? = e*(dt + w)? — e 2%ds3
@ B is hyper-Kahler with self-dual curvature:
j(k) o :](Z) — 5k + Ekém:](m)

VI =0
%flij = +f2ij remark: Ric=10

o v, D, Féi are given in terms of ¢, w
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Killing spinor 54 = e?1:
e V*is Killing and timelike = V* = (9/0t)*
o ds? = e*(dt + w)? — e 2%ds3
@ B is hyper-Kahler with self-dual curvature:
j(k) o :](Z) — 5k + Ekém:](m)

VI =0
%flij = +f2ij remark: Ric=10

o v, D, Féi are given in terms of ¢, w

Killing spinor ¢t = e?e;: as above, although
@ opposite self-duality
o v, D, Féi are given by different functions of ¢,w
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BPS conditions for ¢t =1 + ¢

Killing spinor ¢4 = 1 + ey;

V# is Killing and lightlike = V# = (9/0v)*
2-forms X(K) are closed = dX(*) = du A dx*
ds? = eY(Fdu? + 2dudv) — e=?Y(dX + 3du)?
v, D are given in terms of U, 3

Bianchi identity

M!' = eUH! with V2H!' =0

Fl =
d 0= { F' is fixed modulo a gradient in R3
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@ BPS conditions necessary but not sufficient

o KSI: off-shell constaints among bosonic EOM's

=0 if € is Killing

fermions=0

5L 5(5.05)
Z 5 0oy
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Killing Spinor Identities

@ BPS conditions necessary but not sufficient

o KSI: off-shell constaints among bosonic EOM's

Z oL 5(5E¢b

=0 if €is Killin
56s 00y &

fermions=0

e Example: if et = e?1

(*) = other bosons on-shell
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Example: magnetic attractor (9 = 1 + ¢;)

@ Ansatz: 3=0, F =0, Fii:O;
@ Ansatz: no u-dependence; radial X-dependence
e Modified very special geometry constraint

eV = JaH'HHK + G - [JUH" + H'L (PU)|
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Example: magnetic attractor (9 = 1 + ¢;)

@ Ansatz: 3=0, F =0, FiiZO;
@ Ansatz: no u-dependence; radial X-dependence
e Modified very special geometry constraint
eV = JaH'HHK + G - [JUH" + H'L (PU)|
e Magnetic attractor: H' = 5
o Geometry:
AdSz x §2 with £4 = 205 = maximal supersymmetry
@ Only non-vanishing components: Fg, = magnetic field
@ Radius and charges

20s = Leukp plp" + % - 2p!

magnetic attractor = exact solution approximating near-horizon geometry of a
magnetically chaged black string




An example
oceo

Example: “small” magnetic string

2s = Leuxp'p!p" + 2 - 2p!

o “Small” string — cyxp'p/pK =0
@ ¢ = 0= {5 =0 — degenerate horizon — naked singularity
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Example: “small” magnetic string

2s = greuxp'p’p" + G - 2p!
o “Small” string — cyxp'p/pK =0
@ ¢ = 0= {5 =0 — degenerate horizon — naked singularity
@ ¢ # 0= {5 # 0 — an interpolating solution exists
A

5 10 15 20

70.2,

_3u (Es/r)3e_6A if r < pt —04¢

e ~ Ll f 1 -0.6}
1+ 5 itr>p

-08F}F

-10¢1

[Castro et al. String theory effects on five-dimensional black-hole physics]

@ Corrections smooth out singularity!
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@ Analysis of the most general supersymmetric solution:

o off-shell formalism VS on-shell formalism

spinorial geometry techniques VS Fierz identities
supersymmetry constraints are independent of dynamics
can corrections smooth all singularities?
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Conclusions & Perspectives

@ Analysis of the most general supersymmetric solution:
o off-shell formalism VS on-shell formalism
spinorial geometry techniques VS Fierz identities
e supersymmetry constraints are independent of dynamics
e can corrections smooth all singularities?

@ Possible developments:
e multiple Killing spinors — classification of solutions
e computation of entropy corrections
e gauged supergravity, AdS/CFT
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