

Experimental Opportunities at a Future Collider at CERN

Max Planck Institute for Physics, Munich, January 14, 2025

Felix Sefkow

Menu Sequence of Courses

Project overview and Timeline

Detector Requirements from Physics

Detector concepts

• linear and circular colliders

Selected detector systems and technologies

The Future Circular Collider

Proposed Next Flagship Project at CERN

High-Level Timeline

Circular Colliders at CERN

- 1. Stage: e+e-: Higgs El.weak and top factory (Z, WW, ZH, tt)
- 2. Stage: hh: pp physics at the energy frontier (~100 TeV)

FCC-hh

How Much Time Do We Need?

"Random" Examples - and NOT from the start of the R&D

Nuclear Instruments and Methods in Physics Research A309 (1991) 438–449 North-Holland

Performance of a liquid argon electromagnetic calorimeter with an "accordion" geometry

RD3 Collaboration

NUCLEAF

INSTRUMENTS

& METHODS

IN PHYSICS RESEARCH Section A

Higgs Factory Energies, Luminosities, Experiments

And Detector Requirements

Particle and jet energies vary only logarithmically with collider energy

· detector concepts have been evolving adiabatically from one collider to the other

Two extreme points:

- CLICdet at high energy extensively studied 2010-2020: 0.5 ns pile-up of hadronic γγ background manageable
- Tera-Z at FCCee poses most extreme challenges still to be tackled

FCCee Parameters and Program

Challenges

FCC-ee parameters		Z	W+W-	ZH	ttbar			
√s	GeV	91.2	160	240	350-365			
Luminosity / IP	10 ³⁴ CM ⁻² S ⁻¹	143	20	7.5	1.38			
Bunch spacing	ns	25	160	680	5000			
"Physics" cross section	pb	35,000	10	0.2	0.5			
Total cross section	pb	70,000	30	10	8			
Event rate	Hz	100,000	6	0.5	0.1			
"Pile up" parameter [μ]	10 ⁻⁶	2,500	1	1	1			
Z peak $\sqrt{s} \sim 8$ WW threshold $\sqrt{s} \sim 1$ ZH maximum $\sqrt{s} \sim 2$ [s-channel H $\sqrt{s} \sim 1$ option $\sqrt{s} \sim 1$	4 yrs V 2 yrs 3 yrs 5? yrs	~200 ab ⁻¹ ~10 ab ⁻¹ ~10 ab ⁻¹	$\begin{array}{ccc} 6.10^{12} \ e^+e^- \rightarrow Z \\ 10^8 \ e^+e^- \rightarrow WW \\ 2.10^6 \ e^+e^- \rightarrow ZH \\ \sim 5000 \ e^+e^- \rightarrow H \end{array}$					
Top threshold $\sqrt{s} \sim 3$	345 – 365 GeV	5 yrs	~3 ab-1	2.10 ⁶ e	+e- → tt			

Detector Requirements from Physics

Ambitious

Higgs Factory Program

- 2M ZH events at vs = 240 GeV
- 75k WW \rightarrow H events at \sqrt{s} = 365 GeV
- Higgs Couplings
- Higgs self-couplings (2-4 σ) via loop diagrams
- Unique: e+e- \rightarrow H at \sqrt{s} = 125 GeV

Momentum Resolution ^{σ_{pT}}/_{p_T} ~ 10⁻³ at p_T ~ 50 GeV.
 Jet energy resolution of 3-4% in multi-jet environment for Z/W separation
 Impact parameter resolution for *b*, *c* tagging

Precision EW and QCD Program 6 x 10¹² Z and 10⁸ WW events

- m_Z , Γ_Z , Γ_{inv} , $sin^2\theta_W$, m_W , Γ_W , ...
- 2×10^6 tt events
 - + m_{top} , Γ_{top} , EW couplings
- Indirect sensitivity to new physics

- Absolute normalisation of **luminosity** to 10-4.
- Relative normalisation to 10⁻⁵ (eg Γ_{had}/Γ_{l})
- Momentum resolution, limited by multiple scattering → minimise material.
- Track angular resolution < 0.1 mrad
- Stability of **B-field** to 10-6

Detector Requirements from Physics

Ambitious

Heavy Flavor Program

- 10¹² bb, cc; 1.7 x 10¹¹ ττ produced in a clean environment (10x Belle)
 - CKM matrix, CP measurements,
 - rare decays, CLFV searches, lepton universality

Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m_z
- Axion-like particles, dark photons, Heavy neutral leptons
- Long lifetimes LLPs

- Superior impact parameter resolution
 - Precisely dentify secondary vertices and measure lifetimes
- **ECAL** resolution at few $\%/\sqrt{E}$
- Excellent π^0/γ separation for tau identification
- **Particle ID**: K/ π separation over a wide momentum range \rightarrow e.g. by precision timing
- Sensitivity to far detached vertices
 - Tracking: more layers, "continuous" tracking
 - Calorimeter: granularity, tracking capability
- Large decay length \rightarrow extended decay volume
- Precise timing
- Heremeticity

From Linear to Circular e+e- Detectors

Conceptual Adaptations

Lower energy jets and particles, less collimated jets:

- reduced calorimeter depth
- shift imaging vs. energy resolution balance towards the latter
 - jet assignment ambiguities matter: added value of $\pi^0 \rightarrow \gamma \gamma$ mass reconstruction
- tracking even more multiple-scattering dominated: increased pressure on material budget of vertex detector and main tracker
 - fresh air to gaseous tracking

Limitations on solenoidal field B < 2T, to preserve luminosity:

- · recover momentum resolution with tracker radius
- on the other hand larger magnetic volume also more easily affordable (coil and yoke)

Main difference: no bunch trains; collisions every 20 ns (~ at LHC)

- no power pulsing, more data bandwidth: both imply larger powering and cooling needs
- adds material to the trackers and compromises calorimeter compactness or reduces granularity, timing, speed
- implications strongly technology-dependent, interesting optimisation challenges
- DAQ (and possibly trigger) re-enter the stage, trigger-less read-out challenged

From Linear to Circular e+e- Detectors

Conceptual Adaptations

Lower energy jets and particles, less collimated jets:

- reduced calorimeter depth
- shift imaging vs. energy resolution balance towards the latter

- FCCee has many common challenges with ILC plus significant additional ones
- jet assignment ambiguities matter: added value of $\pi^0 \rightarrow \gamma \gamma$ mass reconstruction
- tracking even more multiple-scattering dominated: increased pressure on material budget of vertex detector and main tracker
 - fresh air to gaseous tracking

Limitations on solenoidal field B < 2T, to preserve luminosity:

- · recover momentum resolution with tracker radius
- on the other hand larger magnetic volume also more easily affordable (coil and yoke)

Main difference: no bunch trains; collisions every 20 ns (~ at LHC)

- no power pulsing, more data bandwidth: both imply larger powering and cooling needs
- adds material to the trackers and compromises calorimeter compactness or reduces granularity, timing, speed
- implications strongly technology-dependent, interesting optimisation challenges
- DAQ (and possibly trigger) re-enter the stage, trigger-less read-out challenged

Detector Concepts

From CLICdet to CLD

12

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

Linear Collider Detectors - FCC Week, November 2020

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

Linear Collider Detectors - FCC Week, November 2020

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

12

From CLICdet to CLD

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

FCCee Detector Concepts

CDR

Strawman Detector Benchmarks

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?

Prototype designs, test beam campaigns,

...

- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

DESY. Experimental Opportunities | Felix Sefkow | January 2025

FCCee Detector Concepts

Strawman Detector Benchmarks

CLD/ILD'

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - $\sigma_p/p, \sigma_E/E$
 - PID (**O**(10 ps) timing and/or RICH)?

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber with powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system

CDR

- Very active community
 - Prototype designs, test beam campaigns,

- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAI
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

DESY. Experimental Opportunities | Felix Sefkow | January 2025

FCCee Detector Concepts

Strawman Detector Benchmarks

- ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - ν σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?
- DESY. Experimental Opportunities | Felix Sefkow | Janu

Detector Concepts

In a Nutshell

Detector concepts form the link between performance requirements and technological capabilities

- thus guide the R&D and give feedback on performance impact of technical solutions
 Two main ingredients:
- a full simulation model
 - enable validation of single particle performance with prototypes
 - realistic prediction of full-event performance: will also need higher-level reconstruction tools
- overall engineering
 - to act and respond in the design of the MDI
 - to guide the optimisation of the global structure and parameters

Collaboration forming at a later stage

• maintain freedom to combine, e.g. tracking and calorimeter technologies ("plug & play")

Status of ALLEGRO / LAr Simulations

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (\Rightarrow ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

DESY. N. Morange (IJCLab)

Second US FCC Workshop, 25/03/2024

Status of ALLEGRO / LAr Simulations

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector
 - sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

DESY. N. Morange (IJCLab)

Plug

& play

Second US FCC Workshop, 25/03/2024

Status of ALLEGRO / LAr Simulations

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity of

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector
 - sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

Plug

& play

Second US FCC Workshop, 25/03/2024

Detector Subsystems and Technologies

Status of DRD collaborations

DRD Meetings: https://indico.cern.ch/category/6805/

Proposals (search for DRDC public) <u>https://cds.cern.ch/?ln=en</u>

Silicon Vertex Detector and Main Tracker

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

- Sensor's contribution to the total material budget is 15-30%
 - Services cables + cooling + support make up most of the detector mass
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression
 - ILC/C³ evolve time stamping towards O(1-100) ns (bunch-tagging)
 - FCC, continuous r/o integrated over ~10µs with O(1) ns timing resolution for beam background suppression

Physics driven requirements	Running constraints	Sensor specifications		
$\sigma < 3 \mu m$	·····>	Small Pixel	~15µm	
Material budget 0.1%X_0/layer	>	Thinning to	50 µm	
12-14 mm	➤ Cooling>	Low Power	20-50 mW/cm ²	
r of the Inner most layer	→ Beam-background ·····>	Fast Readout	~1-10 µs	
<u>.</u>	➤ Radiation damage ·····>	Radiation Tolerance	10 MRad, 10 ¹⁴ n _{eg} / /cm ²	

Time resolution vs. power

O(ns) time resolution for beam-background suppression requires dedicated optimizations

Current designs that can achieve ns or sub-ns time resolutions compensate with higher power consumption

Target power consumption is less than 20 mW/cm²

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²]
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 - 0.02	40 - 2700
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

Dedicated ongoing effort to target O(ns) resolution with MAPS (slides) First prototype (Napa-p1) produced in TJ 65 nm process 5x5 mm², 25 µm pitch

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

Detailed Full Simulations

Realistic Material Budgets

Complete vertex outer barrel system

Detailed Full Simulations

Realistic Material Budgets

Complete vertex outer barrel system

The SVT inner barrel ("bent" layers 0, 1, 2)

SVT inner barrel

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm layer (R_{TTS3}^{max} is < 4 cm!)
- air cooling strategy is more challenging due to the presence of the disks

Innocenti <u>https://indico.mit.edu/event/876/</u> <u>contributions/2981/attachments/</u> <u>1070/1762/20240326_SVTInnocenti.pdf</u>

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- ·Lengths = 27 cm

The SVT inner barrel ("bent" layers 0, 1, 2)

The SVT outer barrel (layers 3, 4) and disks

SVT disks SVT outer layers

SVT disks

Challenges:

 preserve the low material budget in the presence of carbon fiber supports and services disk geometry can obstruct air cooling for the inner barrel

→ SVT for ePIC as the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors

→ unique benchmark for a future MAPS-based FCC tracker

"Flat" Large Area Sensors (LASs) derived from ITS3 optimised for covering large surfaces · traditional staved structure (not bent) carbon fibre support integrated cooling (liquid or air)

Innocenti https://indico.mit.edu/event/876/ contributions/2981/attachments/ 1070/1762/20240326 SVTInnocenti.pdf

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

Gaseous Tracking

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

• over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

• over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

125

130

120

135

 M_{recoil} (GeV)

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

Straw Tube Tracker

More Recently Gaining Momentum

Re-discover rationale

- robustness against single wire failures
- reduced mechanical stress
- different gas choices possible
- flexibility in combination with silicon

Straw Tube Tracker

More Recently Gaining Momentum

Re-discover rationale

- robustness against single wire failures
- reduced mechanical stress
- different gas choices possible
- flexibility in combination with silicon

Calorimetry

Calorimeter Technologies

Already Introduced

All concepts aim at Particle Flow reconstruction

with different emphasis on granularity, energy resolution, stability

Liquid Argon + tiles

- finer longitudinal sampling wrt ATLAS ($4\rightarrow$ 12)
- warm or cold electronics
- CALICE or ATLAS style scintillator tile HCAL

Fibre-based Dual Read-out with crystals in front

- copper or steel matrix, Cherenkov and scintillating fibres, SiPMs
- pointing geometry, superior PID
- Iongitudinal segmentation via timing

CALICE-style sandwich with embedded front-end electronics

- silicon (pads or MAPS) ECAL, SiPM-on-Tile HCAL
 - alternatives: strip ECAL, gas HCAL
- LC technology to be re-invented: no power-pulsing
- synergies with CMS HGCAL upgrade
- **DESY.** Experimental Opportunities | Felix Sefkow | January 2025

Eur.Phys.J.Plus 136 (2021) 10, 1066, https://arxiv.org/abs/2109.00391

٠

Scaling up - Step by Step

Orders of Magnitude

High channel count of highly granular calorimeters remains a challenge on all levels

- production, test, calibration, software, management
- each step in size requires higher degrees of automation
 - e.g. mega-tiles

Full imaging power requires both ECAL and HCAL inside the solenoid

- continuous read-out: no power pulsing and much higher bandwidth than at linear colliders
- much higher demands on compactness than in the CMS endcap
- re-optimisation of sampling including cooling and services / dead spaces
- NB: all alternatives have peripheral electronics

CMS HGCAL (2 end-caps) **280'000** SiPMs

CLD / ILD HCAL barrel only **4'000'000 SiPMs**

DR calorimeter

Full containment hadronic prototype in progress Hidra2 call INFN CSN5

Full containment hadronic prototype in progress Hidra2 call INFN CSN5

DR calorimeter

FUTURE CIRCULAR COLLIDER CIRCULAR DR calorimeter

Full containment hadronic prototype in progress

≻ Hidra2 call INFN CSN5

first DR prototype with containment

stainless steel is non-magnetic

Liquid Argon Goes Granular

Towards Finer 3D Segmentation

Aiming at 10x ATLAS granularity

- few million channels
- multi-layer PCBs
- high-density feed-throughs

Prototypes made and under test

- optimise noise, granularity, capacitance
- study trade-offs on test bench and in simulations

- 7-layer PCB
 - Signal collection on readout planes
 - Transmission through via
 - Signal extraction on trace
 - Ground shields to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has starte⁻¹
 - First f
- Work on 1
- Common integratic

The cryostat available to is the CRRP-00563.

CMOS Transistors Become Better in LAr/LN2

At 77-89K, charge carrier **mobility** in silicon <u>increases</u>, **thermal fluctuations** <u>decrease</u> with **kT/e**, resulting in a **higher gain**, **higher g_m /I_D, higher speed** and **lower noise**

Hucheng Chen, BNL

CMOS Transistors **Become Better** in LAr/LN2

At 77-89K, charge cal Application-specific integrated circuit (ASIC) decrease with kT/e, re lower noise Neutrino detectors

Noise Front-end electronics for detector readout Time projection chambers Noble liquid detectors

chambers, with design principles and details for neutrino physics, a brief history of the technology and details of recent research and development that is driving the design of the detectors under construction. Finally, some comments on future R&D envisioned and the impact of this work on other fields is described. "Cold" in the context of this work applies to CMOS devices operated at 77 K and above, at liquids temperatures of LAr (89 K), LKr (125 K) and LXe (165 K), with most of the tests performed in, or at LN₁ (77 K). The paper is concentrated on the design of cold electronics for large liquid argon TPCs, those that have been successfully operated, MicroBooNE and ProtoDUNE, and those designed or under construction, such as SBND and DUNE first and second 10 kton modules. The high performance achieved with MicroBooNE and ProtoDUNE - a high signal-to-noise ratio combined with high stability of response - is mainly due to the integral approach to design and construction of sensing electrodes with cold readout electronics in a modular approach with the cryostat signal feed-throughs incorporating warm interface electronics into a Faraday cage with the cryostat. The integral concept is described in some detail in this paper.

13

To Slow Control A

Timing

low Ctrl

Monitor

Distributio

Strip Blas

Filters

oTR)

Warm Interface Boa

FPGA

A To DAQ

- placed in close proximity to the sensing wires/strips 3000 FEMBs for FD1 1920 FEMBs for FD2 Warm electronics provide power and digital control of the FEMBs, and provide the interface with the DAQ
- Charge readout performed by 128-channel front-end motherboards (FEMBs)

TPC Electronics Readout Chain

LAr Cold Cables Strip Bias COLDATA ADC 1.1 (x 2) 16-ch FE ASIC (x 8) 16-ch ADC ASIC (x 8) 128-ch Front End Mother Board CE Box on Adapter Board (x 24) Bottom Drift Charge Readout Plane (x 80) Membrane Cryostat

DC In

Local

Bias In

Diagnostics

system

4 FEMBs per warm interface board

- Charge readout performed by 128-channel front-end motherboards (FEMBs) placed in close proximity to the sensing wires/strips
 - 3000 FEMBs for FD1
 - 1920 FEMBs for FD2
- Warm electronics provide power and digital control of the FEMBs, and provide the interface with the DAQ system
 - 4 FEMBs per warm interface board

ProtoDUNE-II-HD

- Cryostat will contain 2 drift volumes, read out by 4 APAs
- Each APA tested with all readout electronics in a nitrogen gas coldbox (down to ~160 K)

ProtoDUNE-II-HD

- Cryostat will contain 2 drift volumes, read out by 4 APAs
- Each APA tested with all readout electronics in a nitrogen • gas coldbox (down to ~160 K)

TPC Electronics Performance for ProtoDUNE-II-HD

General noise performance of electronics at cold is well below the desired ~1000 e⁻ equivalent noise charge (ENC) for DUNE

Minimum-ionizing particle releases >10000 electrons onto each collection wire

Plane

Timeline for the FCCee

Working Hypothesis

all HF projects similar, except maybe CEPC

Timeline for the FCCee

Working Hypothesis

Summary Take-home

FCCee detectors represent exciting challenges

 radiation tolerance generally not an issue - but rate capability is, and in tension with ILC-like ambitions for material budget and compactness

There is time and room for new ideas, concepts and technologies - see this workshop!

• try them out: demonstrators are largely collider-agnostic

Gradual and moderate ramp-up in resources in some places (only)

 but real (scalable) prototypes will soon have to meet TDAQ electronics specs and will require some engineering - to address system aspects from the beginning

FCC PED is inviting sub-detector groups to form

Back-up

CLD with RICH-based Particle ID

Up to high momenta

CLD option with ARC

- New option of CLD to accommodate ARC subdetector (A. Tolosa-Delgado) [link]
- Array of RICH Cells (ARC) is a Cerenkov-based detector
- RICH detectors are suitable for particle identification at high momentum
- Work in geometry optimization, digitization and reconstruction algorithms is ongoing

8

CLD with RICH-based Particle ID

Up to high momenta

CLD option with ARC

- New option of CLD to accommodate ARC subdetector (A. Tolosa-Delgado) [link]
- Array of RICH Cells (ARC) is a Cerenkov-based detector
- RICH detectors are suitable for particle identification at high momentum
- Work in geometry optimization, digitization and reconstruction algorithms is ongoing

8

FUTURE CIRCULAR COLLIDER

Crystal option

Vertex Detector & Interaction Region

Detailed Engineering

Nucleare-Sezione di Pisa

Layer 3 Inner Tracker

Vertex Detector & Interaction Region

Detailed Engineering

○ FCC

Fabrizio Palla INFN Pisa – 7th FCC Physics workshop – Annecy (France) – 29 Jan - 2 Feb 2024

FCC

Proposed layout using an ALICE ITS3 inspired design

(~0.05 % X/X_0 material budget per layer – 5 times less than the Mid-Term one)

After fruitful discussions with C. Gargiulo, A. Junique, G. Aglieri Rinella, W. Snoeys

719

719 719

Data backbone

Fabrizio Palla - Pisa & CERN - 2nd Annual U.S. FCC Workshop - MIT - 25 - 27 March 2024

O FOC

Estimate Distortions in a TPC

Full simulation study in ILD

Combine ILD and CLD elements

- ILD geometry and TPC
- CLD: MDI and inner Si tracker
- lower B field

Primary ions (no backflow)

- 1e10 from physics,
- 1e12 from background

Distortions up to 20 mm

comparable to ALICE TPC

ALICE: data-driven corrections

- comparable to ALICE TPC
- residuals after correction up to 0.6mm⁺
- work ongoing

Particle Flow and High Granularity

Particle Flow Principle

CALICE and Followers

Typical jet: 60% charged, 10% neutral hadrons

- use tracker where possible
- applied in ATLAS and CMS

Need to disentangle energy depositions, using topology <u>and</u> energy

- requires excellent imaging and good energy performance
- 10's or 100's of millions of channel

Particle Flow Reconstruction

Reconstruction of a Particle Flow Calorimeter:

- ***** Avoid double counting of energy from same particle
- ***** Separate energy deposits from different particles

<u>If these hits</u> are clustered together with <u>these</u>, lose energy deposit from this neutral hadron (now part of track particle) and ruin energy measurement for this jet.

Level of mistakes, "confusion", determines jet energy resolution not the intrinsic calorimetric performance of ECAL/HCAL

Three types of confusion:

Mark Thomson
Particle Flow Performance Realistically

Need to disentangle energy depositions, using topology **and** energy

Intrinsic energy resolution relevant at low **and** at high jet energies

High Granularity

Multiple Benefits

High granularity becomes possible thanks too advances in micro-electronics integration

 cost of sandwich calorimeters scales with active area rather than channel count

Benefits beyond particle flow

- imaging for particle ID
- software compensation
- pile-up rejection

Signal over noise for small cells

- lower noise e.g. for silicon or LAr
- more signal from scintillators

High Granularity

Multiple Benefits

High granularity becomes possible thanks too advances in micro-electronics integration

 cost of sandwich calorimeters scales with active area rather than channel count

Benefits beyond particle flow

- imaging for particle ID
- software compensation
- pile-up rejection

Signal over noise for small cells

- lower noise e.g. for silicon or LAr
- more signal from scintillators

