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Text:

At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-­S-­Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given
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Why a new collider?

• At school, when you finish a book and go to the next class, you need a new book.


• With the new book, you want to learn more, go to the next step of knowledge.


• We are all students, nature is our teacher, colliders our books.


• Why a bigger collider? Well, the book has more pages and is bigger, because things become more difficult in 
the higher class.
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 Standard Model (SM) confirmed to high accuracy up to energies of several TeV


 Higgs boson discovered at the mass predicted* by LEP precision EW measurements


 Absence of new physics

Traditional New Physics models are under siege

New approaches: relaxion, Nnaturalness, clockwork…

3

The LHC Legacy (so far)
(thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine)

*within the Standard Model
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The LHC Legacy (so far)

TeV-scale Naturalness might not explain DM/baryogenesis

Cosmology might settle the vacuum of the SM

(thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine)

*within the Standard Model
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We need a broad, versatile and ambitious programme that can

1. sharpen our knowledge of already discovered physics


2. push the frontiers of the unknown at high and low scales

 


more PRECISION and more ENERGY, for more SENSITIVITY to New Physics 

 Standard Model (SM) confirmed to high accuracy up to energies of several TeV


 Higgs boson discovered at the mass predicted* by LEP precision EW measurements


 Absence of new physics

Traditional New Physics models are under siege

New approaches: relaxion, Nnaturalness, clockwork…

3

The LHC Legacy (so far)

TeV-scale Naturalness might not explain DM/baryogenesis

Cosmology might settle the vacuum of the SM

(thanks to a firm control of exp. & th. syst. uncertainties, the LHC became a precision machine)

*within the Standard Model
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Precision as a discovery tool

 Uranus anomalous trajectory ⇢ Neptune


 Mercury perihelion ⇢ General Relativity


 Z/W interactions to quarks and leptons ⇢ Higgs boson


 …

Many historical examples
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Precision as a discovery tool

 Uranus anomalous trajectory ⇢ Neptune


 Mercury perihelion ⇢ General Relativity


 Z/W interactions to quarks and leptons ⇢ Higgs boson


 …

Many historical examples

Sometimes, these discoveries were expected based on theoretical arguments 

(e.g. Rayleigh-Jeans UV catastrophe for QM, unitarity breakdown for the Higgs) 


but precision gave valuable additional clues. 

In any case, experimentalists shouldn’t lean too heavily on theorist priors/prejudices 


(remember discovery of P violation).

At times when we don't have a precise theoretical guidance, we need powerful experimental tools to make progress.
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Precision as a discovery tool

 Uranus anomalous trajectory ⇢ Neptune


 Mercury perihelion ⇢ General Relativity


 Z/W interactions to quarks and leptons ⇢ Higgs boson


 …

Many historical examples

Sometimes, these discoveries were expected based on theoretical arguments 

(e.g. Rayleigh-Jeans UV catastrophe for QM, unitarity breakdown for the Higgs) 


but precision gave valuable additional clues. 

In any case, experimentalists shouldn’t lean too heavily on theorist priors/prejudices 


(remember discovery of P violation).

At times when we don't have a precise theoretical guidance, we need powerful experimental tools to make progress.

Herwig Schopper in CERN Courier: 

People often say “not much came out from LEP”. That is completely wrong. 


What people forget is that LEP changed high-energy physics from a 10% to a 1% science.

https://cerncourier.com/a/lessons-from-lep/
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The scalar discovery in 2012 has been an important milestone for HEP.

Many of us are still excited about it. Others should be too.

The Higgs requires more precision
 “The Higgs isn’t everything; it’s the only thing!”* 

* M.E. Peskin paraphrasing UCLA football coach H.R. Sanders

!”

5

https://arxiv.org/abs/2302.05472
https://en.wikipedia.org/wiki/Winning_isn't_everything;_it's_the_only_thing
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Higgs = new forces of different nature than the interactions known so far
• No underlying local symmetry.

• No quantised charges.

• Deeply connected to the space-time vacuum structure.
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The scalar discovery in 2012 has been an important milestone for HEP.

Many of us are still excited about it. Others should be too.

The Higgs requires more precision
 “The Higgs isn’t everything; it’s the only thing!”* 

* M.E. Peskin paraphrasing UCLA football coach H.R. Sanders

— The discovery of the Higgs opens new deep questions — 

• What is the origin of the Higgs boson? 


• Is it elementary and isolated, or does it emerge from a deeper underlying dynamics? 


• Which role did the Higgs play during the big bang, and how did it influence the evolution 
of the Universe? 


• Does the Higgs boson play a role in explaining other fundamental open questions in 
particle physics which the SM cannot address (flavour, DM, baryogenesis, inflation…)5

https://arxiv.org/abs/2302.05472
https://en.wikipedia.org/wiki/Winning_isn't_everything;_it's_the_only_thing
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Star life-time Size of atoms

Stability of nuclei/matter

Birth of vacuum Matter/antimatter imbalance

The knowledge of the values of the Higgs couplings is essential 

to understand the deep structure of matter/Universe: 

https://arxiv.org/abs/2302.05472
https://en.wikipedia.org/wiki/Winning_isn't_everything;_it's_the_only_thing
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The scalar discovery in 2012 has been an important milestone for HEP.

Many of us are still excited about it. Others should be too.

The Higgs requires more precision
 “The Higgs isn’t everything; it’s the only thing!”* 

* M.E. Peskin paraphrasing UCLA football coach H.R. Sanders

(HL)-LHC will make remarkable progress.

But it won’t be enough.


A new collider is needed!

5

Star life-time Size of atoms

Stability of nuclei/matter

Birth of vacuum Matter/antimatter imbalance

The knowledge of the values of the Higgs couplings is essential 

to understand the deep structure of matter/Universe: 
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— FCC —

Physics Overview 
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Future Circular Collider
• A versatile particle collider housed in a 91km underground ring around CERN. 


• Implemented in several stages: 

• an e+e- “Higgs/EW/Flavour/top/QCD” factory running at 90-365 GeV 


• followed by a high-energy pp collider reaching 100 TeV

CG - / 347

FCC-ee

FCC-hh
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FCC Project on a Fast Track
After just over a decade of pioneering work, huge progress has been achieved: 


• The first proposal of a high-luminosity e+e- circular collider to study the Higgs boson was made thirteen years ago 
(December 2011) [A. Blondel & F. Zimmermann following discussions with P. Janot at CERN cafeteria on a bright 2011 
summer night speculating on the rumours of a Higgs at 140 GeV];


• The Future Circular Collider collaboration was created ten years ago, towards the conceptual design study of a 100 TeV 
pp collider, with an e+e- Higgs factory as a potential intermediate step;


• The Conceptual Design Reports of the FCC physics case, and of the FCC-ee and FCC-hh colliders, were published 
six years ago and submitted to the 2018-19 European Strategy Update;


• The CERN Council updated the European Strategy four years ago, stating that an e+e- Higgs factory would be the 
highest priority next collider, to be followed by a proton-proton collider at the highest achievable energy;


• Three years ago, the CERN Council consequently initiated and funded a technical and financial feasibility study for 
FCC with focus on an e+e- electroweak and Higgs factory as a first stage, study to be completed by the time of the next 
European Strategy Update;


• A year ago, a 700+ pages mid-term report about the FCC feasibility was submitted to the CERN Council for a thorough 
review, with a conclusion expected at the beginning of 2025.  Very positive feedback from CERN council in Feb. 2, 2024.
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FCC-hh tunnel is great for FCC-ee
• 80-100 km is needed to accelerate pp up to 100 TeV


• 80-100 km is also exactly what is needed

๏ to get enough luminosity (5 times more than in 27 km) to get sensitivity to the 

Higgs self coupling, the electron Yukawa coupling, or sterile neutrinos, 

๏ to make TeraZ a useful flavour factory,  

๏ for transverse polarisation to be available all the way to the WW threshold 

(allowing a precise W mass measurement) 

๏ for the top threshold to be reached and exceeded. 
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FCC-ee Run Plan
LEP1 data accumulated in every 2 mn. Exciting & diverse programme with different priorities every few years.

(order of the different stages still subject to discussion/optimisation)
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FCC-ee Run Plan
LEP1 data accumulated in every 2 mn. Exciting & diverse programme with different priorities every few years.

Table 129 The baseline FCC-ee 16-years programme with four interaction points, showing the centre-of-mass
energies, instantaneous luminosities for each IP, integrated luminosity per year summed over 4 IPs corresponding
to 185 days of physics per year and 75% e�ciency, in the order Z, WW, ZH, tt̄. The luminosity is assumed to be
half the design value for machine commissioning and optimisation during the first two years at the Z pole, the first
two years at the WW threshold, and the first year at the tt̄ threshold. (Should the order of the sequence be
modified to either Z, ZH, WW, t̄t or ZH, WW, Z, tt̄, the ZH stage would start with two years at half the design
luminosity followed by two years at design luminosity, while the WW stage would run afterwards for only one year
but at design luminosity.) The luminosity at the Z pole (the WW threshold) is distributed as follows: 40 ab�1 at
88 GeV, 125 ab�1 at 91.2 GeV, and 40 ab�1 at 94 GeV (5 ab�1 at 157.5 GeV, and 5 ab�1 at 162.5 GeV). The
number of WW events include all

p
s values from 157.5 GeV up.

Working point Z, years 1-2 Z, later WW, years 1-2 WW, later ZH tt̄
p
s (GeV) 88, 91, 94 157, 163 240 340–350 365

Lumi/IP (1034 cm�2s�1) 70 140 10 20 5.0 0.75 1.20

Lumi/year (ab�1) 34 68 4.8 9.6 2.4 0.36 0.58
Run time (year) 2 2 2 – 3 1 4

1.45⇥ 106 ZH 1.9⇥ 106 tt̄
Number of events 6⇥ 1012 Z 2.4⇥ 108 WW + +330kZH

45k WW ! H +80kWW ! H

526

(order of the different stages still subject to discussion/optimisation)
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FCC-ee Run Plan
LEP1 data accumulated in every 2 mn. Exciting & diverse programme with different priorities every few years.

— Superb statistics achieved in only 15 years —  
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ECM-related uncertainties on selected EWPOs, as quoted in Final Report.  These 
numbers are neither the last word (we may do better), nor are they easily achievable
(they assume further hard work, and excellent control of e.g. detector biases).

ECM uncertainties on EW precision observables

• Absolute energy scale most important for mZ and mW.  Current estimates
set by confidence we have in going from RDP measurement to Eb.  In particular, 
mW warrants renewed and closer studies during the pre-TDR phase.

• ‘point-to-point’ and energy spread most relevant for ΓZ.  Quoted numbers
based on what can be done with di-muons, assuming detector effects can
be controlled. For ‘point-to-point’ we will work on machine-based cross checks.

• We are approaching regime where ΓZ may not be ECM-systematics limited ! 

ECM-related uncertainties on selected EWPOs

( ECM determined by resonant spin depolarisation)


For these observables, dominant experimental uncertainty now probably comes from the luminosity

Need to also control theoretical uncertainties to the same level!
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FCC-ee Physics Programme

FCC-ee
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Rebeca Gonzalez Suarez  (Uppsala University) - Spåtind 2025

Detector concepts

19

FCC-ee

FCC-hh

CLD IDEA ALLEGRO

Based on CLIC detector design, 
arXiv:1911.12230 

Full silicon vertex detector and 
tracker 

3D-imaging highly-granular 
calorimeter system 

Coil outside calorimeter system 

Innovative, possibly cheaper than 
CLD 

https://pos.sissa.it/390/819 
Baseline in many ongoing studies 

Silicon vertex detector 
Short-drift, ultra-light wire chamber 

Dual-readout calorimeter 
Thin and light solenoid coil inside 

calorimeter system

GranuLAr WS, IJCLab 2022 – 
Martin Aleksa 

Highly granular noble-liquid 
calorimeter 

Thin 2T solenoid in the calorimeter 
cryostat.

More complementary options possible (4 IP!) → Can we optimize detector 
designs for the complete physics program? Yes! opportunities to contribute 
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Collider Programme (and beyond).

• Opportunities beyond the baseline plan (√s below Z, 125GeV, 217GeV; larger integrated lumi…)

• Opportunities to exploit FCC facility differently (to be studied more carefully):

๏ using the electrons from the injectors for beam-dump experiments, 
๏ extracting electron beams from the booster, 
๏ reusing the synchrotron radiation photons.
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photon science 

(light source, 

Compton Backscattering sources) 


HEP applications 

(strong QED, dark sector)


e+ applications 

(surface science, 

Ps Bose-Einstein Condensate, 

511 keV X-ray laser )


multipurpose applications

of the e-/e+ beams 

(radionuclide production, 

neutron source)

workshop webpage link

https://indico.cern.ch/event/1454873/
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Higgs Factory
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FCC-ee: the ultimate e+e- Higgs laboratory 

Central goal of FCC-ee:  model-independent measurement of Higgs width and 
couplings with (<)% precision.   Achieved through operation at two energy points.

Sensitivity to both processes very helpful in improving precision on couplings.

5 ab-1 at 240 GeV
106 HZ events
��N�::ĺ+�HYHQWV

1.5 ab-1 at 365 GeV
200k HZ events
��N�::ĺ+�HYHQWV

Complementarity with 365GeV on top of 240GeV

Higgs @ FCC-ee.

7.2 ab-1 @ 240GeV

1.5x106 HZ evts

45k WW→H evts

2.7 ab-1 @ 365 GeV

330k HZ evts

80k WW→H evts

(plot in bonus)�/W /b/g,c/�improvement factor: ∞/3/2/1.5/1.2 on 

new optics design

(May 2024)


gives

50% more lumi


@ 240 GeV

⇒ 2.5x106 HZ evts
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Higgs @ FCC-ee.

the FCC CDR [9, 416], but has been studied afterwards [453, 454]. The conclusions
reached are summarised, and further recent explorations performed are presented.

Table 131 Expected 68%CL relative precision (%) of the 
parameters at HL-LHC and FCC-ee (combined with HL-LHC).
The corresponding 95%CL upper limits on the untagged,
BRunt, and invisible, BRinv, branching ratios are also given.
As denoted with an asterisk (⇤), for the HL-LHC numbers, a
bound on |V |  1 is applied since no direct access to the Higgs
width is possible at hadron colliders. This restriction is lifted in
the combination with FCC-ee (or other lepton colliders), since
the latter ones provide the necessary access to the Higgs width.
Cases in which a particular parameter has been fixed to the
SM value due to lack of sensitivity are shown with a dash (�).
Results from Ref. [452], updated with the 4-IPs scenario.

Coupling HL-LHC FCC-ee (240–365GeV)
2 IPs / 4 IPs

W [%] 1.5⇤ 0.43 / 0.33
Z [%] 1.3⇤ 0.17 / 0.14
g [%] 2⇤ 0.90 / 0.77
� [%] 1.6⇤ 1.3 / 1.2
Z� [%] 10⇤ 10 / 10
c [%] – 1.3 / 1.1
t [%] 3.2⇤ 3.1 / 3.1
b [%] 2.5⇤ 0.64 / 0.56
µ [%] 4.4⇤ 3.9 / 3.7
⌧ [%] 1.6⇤ 0.66 / 0.55

BRinv (<%, 95% CL) 1.9⇤ 0.20 / 0.15
BRunt (<%, 95% CL) 4⇤ 1.0 / 0.88

The interpretation of current Higgs-boson measurements at the LHC was so far
not hindered by the finite precision of the electroweak measurements realised at LEP
and SLC. With the FCC-ee targeting almost an order-of-magnitude increase in the
precision of Higgs properties in the main channels, the current (experimental and
theoretical) precision on electroweak quantities will become a limitation. The Z-pole
run of the FCC-ee is instrumental in avoiding contamination from electroweak coupling
uncertainties in the Higgs characterisation. If the electroweak symmetry is linearly
realised on the Standard Model (SM) fields, the interplay between the Higgs and
electroweak sectors is even deeper. Indeed, diboson e+e� ! W+W� production is
then sensitive to some of the same new-physics e↵ects as Higgs production and decay
processes, making both types of measurements complementary.

The SMEFT framework truncated to operators of dimension six is adopted. It
assumes that new physics arises at a scale ⇤, significantly above the electroweak one,
below which the particles and symmetries are the SM ones, with the Higgs embedded
in a SU(2)L doublet. The current status of the global SMEFT fit is shown in Fig. 348.
It projects the results of the fit to the di↵erent dimension-six operators entering at
leading order in electroweak (including anomalous triple gauge couplings, aTGCs, and
boson-fermion couplings, V↵) and Higgs processes onto the sensitivity to new-physics

537

Table from mid-term report

(new luminosity at 240GeV will further improve


the coupling reach, e.g. 0.11% for 𝜅Z)

X =
ghXX

gSMhXX

Higgs coupling sensitivity• Absolute normalisation of couplings (by recoil 
method). The LHC fit doesn’t converge w/o making any assumption.


• Measurement of width (from ZH>ZZZ* and WW>H)


•  

• Model-independent coupling determination and 

improvement factor up to 10 compared to LHC

• (Indirect) sensitivity to new physics                        

up to 70-100 TeV (for maximally strongly coupled models)


• Unique access to electron Yukawa 
(�X = v2/f2 & mNP = gNPf)

��H ⇠ 1%, �mH ⇠ 3MeV (resp. 25%, O(20) MeV @ HL-LHC)
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Higgs @ FCC-ee.
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The interpretation of current Higgs-boson measurements at the LHC was so far
not hindered by the finite precision of the electroweak measurements realised at LEP
and SLC. With the FCC-ee targeting almost an order-of-magnitude increase in the
precision of Higgs properties in the main channels, the current (experimental and
theoretical) precision on electroweak quantities will become a limitation. The Z-pole
run of the FCC-ee is instrumental in avoiding contamination from electroweak coupling
uncertainties in the Higgs characterisation. If the electroweak symmetry is linearly
realised on the Standard Model (SM) fields, the interplay between the Higgs and
electroweak sectors is even deeper. Indeed, diboson e+e� ! W+W� production is
then sensitive to some of the same new-physics e↵ects as Higgs production and decay
processes, making both types of measurements complementary.

The SMEFT framework truncated to operators of dimension six is adopted. It
assumes that new physics arises at a scale ⇤, significantly above the electroweak one,
below which the particles and symmetries are the SM ones, with the Higgs embedded
in a SU(2)L doublet. The current status of the global SMEFT fit is shown in Fig. 348.
It projects the results of the fit to the di↵erent dimension-six operators entering at
leading order in electroweak (including anomalous triple gauge couplings, aTGCs, and
boson-fermion couplings, V↵) and Higgs processes onto the sensitivity to new-physics
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(new luminosity at 240GeV will further improve


the coupling reach, e.g. 0.11% for 𝜅Z)

X =
ghXX

gSMhXX

Higgs coupling sensitivity

— Higgs programme needs Z-pole —

Figure 12: Changes in correlations between couplings depending on the precision of EW
measurements assumed. The top row is for CEPC and the bottom two rows are for FCC-ee.
HL-LHC projections are included for all scenarios.

and FCC-ee .
The change in the correlations from one EW scenario to another for both CEPC and

FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by

– 32 –
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FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by

– 32 –

J. De Blas et al. 1907.04311

• Absolute normalisation of couplings (by recoil 
method). The LHC fit doesn’t converge w/o making any assumption.


• Measurement of width (from ZH>ZZZ* and WW>H)


•  

• Model-independent coupling determination and 

improvement factor up to 10 compared to LHC

• (Indirect) sensitivity to new physics                        

up to 70-100 TeV (for maximally strongly coupled models)


• Unique access to electron Yukawa 
(�X = v2/f2 & mNP = gNPf)

��H ⇠ 1%, �mH ⇠ 3MeV (resp. 25%, O(20) MeV @ HL-LHC)

https://arxiv.org/abs/1907.04311


CG - Jan. 14, 2025/ 3517

Higgs @ FCC-ee.
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Fig. 5: From left to right, and from top to down: Operation time in years, electricity
consumption in TWh, estimated cost in billion euros, and estimated carbon emissions in Mt
CO2e, for the construction and operation of the two stages of three Higgs factory options at
CERN (FCC-ee with

p
s = 240/365GeV in red, CLIC with

p
s = 380/1500GeV in green,

and ILC@CERN with
p
s = 250/500GeV in blue) as function of the desired precision on the

Higgs coupling to the Z boson (as obtained from the SMEFT fit of Ref. [11]). For illustration,
the overall cost and carbon budget are shown in the two bottom plots, with the runs at the
Z pole and WW threshold of FCC-ee, and with the tunnel(s) and infrastructure of a 10 TeV
pCM after CLIC or ILC@CERN. The three arrows in the each plot indicate the default run
plans of FCC-ee, CLIC and ILC@CERN. For example, FCC-ee would need only 2 (4) years
to reach the HZZ coupling precision that CLIC (ILC@CERN) would achieve in 15 (28) years.

14

Table 6: Additional time needed, yearly electricity consumption, and total electricity
consumption by the planned second stages of FCC-ee, CLIC and ILC@CERN (with
1.2 ⇥ 107 seconds/year), to reach the precisions listed in Table 5. The last two rows
indicate the total duration and energy consumption during the default first and second
stages.

Collider FCC-ee240+365 CLIC380+1500 ILC250+500

Additional duration (years) 5 7 13

Yearly energy consumption (TWh) 1.77 1.8 1.2

Additional energy consumption (TWh) 9 13 15

Total duration (years) 8 15 28

Total energy consumption (TWh) 13 17 24

0.276 and 0.444 ab�1 (2.3 and 3.7 ⇥ 1034 cm�2s�1) for CLIC at 380 and 1500GeV;
and 0.324 and 0.432 ab�1 (2.7 and 3.6⇥ 1034 cm�2s�1) for ILC at 250 and 500GeV.

The conclusion, illustrated in Table 7 and Fig. 2, is that about 48 years for CLIC
and 46 years for ILC@CERN are needed during their first and second stages to reach
the precision of the eight-years FCC-ee run at 240 and 365GeV, increased to more
than half a century once the regular shutdown periods for maintenance and upgrades
are included.3 The linear collider electricity consumption during this half a century of
operation would then be three to four times larger than that of the FCC-ee run, for
the same physics outcome. Even after these second stages a priori favourable to linear
colliders, FCC-ee operations therefore remain – by large factors – the most sustainable
operations of all. The contribution of the facility construction is addressed in the next
section.

Table 7: Time needed for CLIC380+1500 and for ILC250+500 @CERN to
deliver the integrated luminosity needed to reach the same precision as FCC-
ee240+365 in eight years, for selected couplings. The last row indicates the total
energy consumption for the average 46 years of operation. (The CLIC dura-
tion for the coupling to the b seems o↵, probably because of rounding errors
after/before the fit in Ref. [11], but is conservatively included in the average.)

Duration (years) FCC-ee240+365 CLIC380+1500 ILC250+500

b 8 26 43

c 8 50 41

⌧ 8 54 47

Z 8 54 49

W 8 56 49

Average duration (years) 8 48 46

Electricity consumption (TWh) 13 55 41

A third stage at a centre-of-mass energy of 1TeV is also envisioned for ILC, for a
planned duration of 13 years (after 2 years shutdown) if implemented at CERN, and an

3
With a similar reasoning, FCC-ee would need about 4 (2) years to reach the precision of the default 28

(15)-years ILC (CLIC) run at 250/500 (380/1500)GeV.

9

The fastest, greenest, cheapest way to Higgs precision

Blondel et al 2412.13130

https://arxiv.org/pdf/2412.13130
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Higgs Mass
• Recoil mass in Z(ll)H events (l=e,µ)

• Thorough study of detector design impact


• Larger variations from track resolution 

• High field & lighter tracker beneficial 

Robust prospects to reach 

and even go below 


the natural 4.1 MeV limit 

set by the SM Higgs width

4 / 12

Measuring the Higgs mass

Higgs mass from inclusive analysis

→ Using recoil mass in Z(ll)H events (l=e,µ)
▶ Simple event selection

▶ 2 SF-OS leptons
▶ 86 < mll < 96 GeV
▶ 20 < pll < 70 GeV  ( pll > 20 GeV @ s=365 GeV)√
▶ 120 < mrec < 140 GeV

▶ Simple combined Mt of recoil mass
▶ Combining ee & µµ categories
▶ With realistic array of systematic uncertainties:

 → Beam energy spread, s & energy scales (e/µ)√

▶ Expecting δm ~ 4 MeV (3.1 stat. +  2.5 syst)
▶ Assuming 10.8 ab⁻¹ of data (4 IP scenario)
▶ Sensitivity ~ fully driven by  s = 240 GeV√

→ Thorough study of detector design impact
▶ Larger variations from track resolution

▶ High Meld & lighter tracker beneMcial
▶ But no dramatic impact from detector conMguration

▶ All tested scenarios reaching ~ 4 MeV
 → Resolution on mH at the level of ΓH 
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Hadronic Decays

Hadronic final states dominate
Why is this 

important?
 At LHC those are 

often hopeless – 

background

 FCC-ee offers 

cleaner 

environment, 

more handles and 

data calibration

observed

• 80% of the Higgs decays are fully 
hadronic

• challenging for LHC

• good prospects for FCC-ee thanks to clean 

environment and optimised tagging algorithms

6 / 12

Hadronic Higgs decays

We have never been as good at “jet tagging”

→ “ParticleNet” jet tagger
▶ GNN-based Tavour tagging algorithm

▶ Already widely used in CMS
▶ Now also used for FCC prospect studies

→ Going for the second generation
▶ “FCC version” of Pnet classes jets into b/c/s/g/τ
▶ Tested so far in 3 complementary analyses

▶ Orthogonal through Z decay choice (Z ll,νν,qq)→
▶ All performing combined Mts of Higgs/Z-boson mass
▶ Using “Higgs decay” categories, deMned from PNet + kinematic features 

▶ Here considering 10.8 ab⁻¹ @ 240 GeV 
▶ Expected ~ 10 % sensitivity improvement from combination with 365 GeV

→ Extension to light quarks & exotic (FCNC) decays
▶ Similar approach, with additional classes in discriminant

▶ So far only considering Z νν→
▶ Still far from SM, but signiMcant room for improvement

δ(σxBR) [%]

Z(ll)H Z(vv)H Z(qq)H Comb.

H→bb 0.7 0.4 0.3 0.22

H→cc 4.1 2.2 3.3 1.7

H→ss 230 150 440 120

H→gg 2.2 1.1 3.1 0.9

H→ WW 1.8 1.1 8.7 1.1

σxBR 
95% CL

BR(SM)

H→dd 1.4e-03 6e-07

H→uu 1.5e-03 1.4e-07

H→bs 3.7e-04 e-07

H→bd 2.7e-04 e-09

H→sd 7.7e-04 e-11

H→cu 2.5e-04 e-20
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Solid 
measurements in 
2nd generation

Interesting prospects 
for 1st generation 
and FCNC decays
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Electron Yukawa

Resonant Higgs production 

1.64 fb

0.6 fb 
with ISR

Electron Yukawa coupling

10

0.3 fb with 4.2 MeV 
c.m.e. spread

Reduce energy spread by mono-
chromatisation (https://cds.cern.ch/record/2159683)  

2(7) ab-1 per year with c.m.e spread of  
6 (10) MeV  

 

10 decay 
channels 
analysed

arXiv:1509.02406

15% precision on SM coupling 
with 4 IP, 3yr

Jadach+, arXiv: 1509.02406

The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:

2/15Snowmass EF01 Higgs WG, Sept 2020                                                               David d'Enterria (CERN)

c
o
u
p
lin

g
 l

mass(GeV)5·10-4

2·10-6

Generation of lightest fermion masses?Generation of lightest fermion masses?

e±

u,d

s

n
DIRAC

<10-12

<3·10-10

\\

■ LHC can only measure 3rd (plus a few 2nd)-generation Yukawas. 
■ Can we prove mass generation for stable (u,d,e,n) matter in the Universe?

5/15Snowmass EF01 Higgs WG, Sept 2020                                                               David d'Enterria (CERN)

√s
spread 

= G
H 

= 4.2 MeV

~45% x-section reduction

■  s(e+e-H) = 1.64 fb for Breit-Wigner with natural G
H 

= 4.2 MeV width.
    But Higgs production greatly suppressed off resonant peak.

■ Convolution of Gaussian energy spread of each e± beam with Higgs
    Breit-Wigner leads to a (Voigtian) effective cross-section decrease:

              √              √ss
eeee

 spread (MeV) spread (MeV)

““Actual” s-channel eActual” s-channel e++ee--   H cross section H cross section

Reachable with beams 
monochromatization?
What luminosity loss price?

[F.Zimmermann, A.Valdivia:
 JACoW-IPAC2017-WEPIK015
 JACoW-IPAC2019-MOPMP035
 See F. Zimmemann’s slides]

6/15Snowmass EF01 Higgs WG, Sept 2020                                                               David d'Enterria (CERN)

■ Extra ~40% reduction 
    due to QED radiation:

s
spread+ISR

(e+e-H)=0.17´s(e+e-H)=290 ab 

√s
spread 

~ G
H 

= 4.2 MeV
■ Full convolution of both effects:

Reduction: ~45%

              √              √ss
eeee

 spread (MeV) spread (MeV)

e± energy loss due to 
QED (ISR+FSR)

Reduction: ~40%

[S.Jadach, R. Kycia, PLB755 (2016) 58]

““Actual” s-channel eActual” s-channel e++ee--   H cross section H cross section

Note: Higgs pole known to within ±5MeV
         Monochrom. goal: √s

spread
»G

H 
= 4.2 MeV

https://arxiv.org/abs/1509.02406
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Patrick Janot

Comparisons with other scenarios
q Low-energy Higgs factories

u One million Higgs in three years at FCC-ee
u gHZZ and GH: typically twice better at FCC-ee

u Higgs self-coupling sensitivity only at FCC-ee

14 Novembre 2019
FCC France, LPNHE, Paris 8

q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC

# Higgs bosons:        500k        175k       1.1M           1.3M

First number: kappa fit / Second number: EFT fit

C
M

S
R

un
1

AT
LA

S
R

un
2

H
L-

LH
C

FC
C

-h
h

FC
C

-e
e

2 
IP

, 1
yr

FC
C

-e
e

4 
IP

, 3
yr

ek

1-10

1

10

210

310

Standard Model

ekUpper Limits / Precision on 

nn
 y

r

m
m

 y
r

The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:
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The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:

04.02.22 Alain Blondel  FCC-ee Physics 10

Unique: electron Yukawa coupling Measure e+e- ! H @ 125.xxx GeV
requires

-- Higgs mass to be known to <<5 MeV (OK, 3 MeV)
-- Huge luminosity (several years)
-- monochromatization to reduce sECM
-- continuous adjustment of ECM (transv. Polar.)
-- an extremely sensitive event selection

HUGE CHALLENGE
under study

Monochromatization: UNDER STUDY
taking advantage of the separate e+ and e- rings, one can distribute
in opposite way high and low energies in the beam (in x, z time)   

opposite sign horizontal dispersion
opposite difference in arrival time 

so far,
SM level

combine?

Monochromatisation
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The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:

Still working on optimizing luminosity vs monochromatization

1IP/1yr

0.4σ
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,

8 D. d’Enterria et al.: Electron Yukawa coupling via s-channel Higgs production at FCC-ee

Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].

d'Enterria+, arXiv: 2107.02686

w. 10/ab

w/ 10/ab: S~55, B~2400 → 1.1σ

https://arxiv.org/abs/2107.02686
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Comparisons with other scenarios
q Low-energy Higgs factories

u One million Higgs in three years at FCC-ee
u gHZZ and GH: typically twice better at FCC-ee

u Higgs self-coupling sensitivity only at FCC-ee

14 Novembre 2019
FCC France, LPNHE, Paris 8

q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC
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The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:

L/5

0.6σ

Still working on optimizing luminosity vs monochromatization

= 5 yrs @ √s = 125 GeV

1IP/1yr

0.4σ
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,
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Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].
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q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,
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Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].
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q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,
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Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].
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q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,
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Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].
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q Unique to FCC-ee: Hee coupling
u 20 ab-1 / year at √s = 125 GeV   (not in baseline FCC-ee)

u Monochromatization s√s ~ 1-2 × GH ~ 6 to 10 MeV

l Resonant ee→ H production

l 2s excess in one year with 2 IP

l ±15% precion on ke in 3 years with 4 IP
è Not feasible at ILC or CLIC
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The high luminosity, the precise control of the beam √s, the clean reconstruction of final states

make it possible to observe:
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Fig. 1. Typical diagrams for the direct Higgs channel production (left) decaying into electroweak bosons (top) and fermions or
gluons (bottom), and associated backgrounds (center), considered in this work. Right: Resonant Higgs production cross section,
including ISR e↵ects, for several values of the e+e� c.m. energy spread �ps = 0, 4.1, 7, 15, 30, and 100MeV [17].

code at NLO accuracy [31]. The pythia 8 signal cross sections are absolutely normalized to match our benchmark
�ee!H = 0.28 fb value for ISR plus �ps = 4.1-MeV energy spread discussed above (second curve of Fig. 1 right). Higgs
decay modes not listed in Table 1 are either completely swamped by background (e.g. H ! ZZ⇤

! 4j) or have too low
B’s (e.g. H ! ZZ⇤

! 4`) and thereby have zero expected counts for any realistic integrated luminosity. The generator-
level background cross sections in Table 1 are indicatively quoted without ISR to avoid artificial enhancements of
their values due to radiative-returns to the Z pole, which can be easily removed experimentally (e.g. tagging the ISR
photon and/or imposing requirements on the total energy of the event). The last column lists the indicative signal-
over-background (S/B) expected for the dominant (irreducible) background of each channel, at the generator level
without any analysis cuts. Three broad categories can be identified:

i) Final states with pairs of jets or tau leptons, with very large backgrounds leading to S/B ⇡ 10�7–10�5, except
for the H ! gg case for which no actual physical background exists (Z⇤, �⇤ do not couple to gluons), but for an
experimental misidentification probability of light-quarks for gluons that we take as 1% (Table 2);
ii) Final states from intermediate WW⇤ decays, with S/B ⇡ 10�3;
iii) Final states from intermediate ZZ⇤ decays with S/B ⇡ 10�2, but very small signal cross sections.

In addition, the last row of the table lists the Higgs diphoton decay mode (discovery channel at the LHC) that
su↵ers from both, a tiny signal cross section and 8 orders-of-magnitude larger backgrounds. A swift analysis of this
table allows one to identify two channels with some potentiality in terms of statistical significances, H ! gg and
H ! WW⇤

! `⌫ 2j, which both feature ⇠25-ab cross sections and S/B ⇡ 10�3.

Table 1. Cross sections (including ISR and �ps = 4.1MeV) times branching fractions (B) for 11 final states in e+e� ! H(XX)

signal processes and associated dominant e+e� ! XX backgrounds (without ISR), and ratio of signal-over-background for each
channel before any analysis cuts (the digluon S/B quoted assumes a light-q ! g mistagging rate of 1%).

Higgs decay channel B � ⇥ B Irreducible background � S/B

e+e� ! H ! bb 58.2% 164 ab e+e� ! bb 19 pb O(10�5)
e+e� ! H ! gg 8.2% 23 ab e+e� ! qq 61 pb O(10�3)
e+e� ! H ! ⌧⌧ 6.3% 18 ab e+e� ! ⌧⌧ 10 pb O(10�6)
e+e� ! H ! cc 2.9% 8.2 ab e+e� ! cc 22 pb O(10�7)

e+e� ! H ! WW⇤
! `⌫ 2j 21.4%⇥67.6%⇥32.4%⇥2 26.5 ab e+e� ! WW⇤

! `⌫ 2j 23 fb O(10�3)
e+e� ! H ! WW⇤

! 2` 2⌫ 21.4%⇥32.4%⇥32.4% 6.4 ab e+e� ! WW⇤
! 2` 2⌫ 5.6 fb O(10�3)

e+e� ! H ! WW⇤
! 4j 21.4%⇥67.6%⇥67.6% 27.6 ab e+e� ! WW⇤

! 4j 24 fb O(10�3)

e+e� ! H ! ZZ⇤
! 2j 2⌫ 2.6%⇥70%⇥20%⇥2 2 ab e+e� ! ZZ⇤

! 2j 2⌫ 273 ab O(10�2)
e+e� ! H ! ZZ⇤

! 2` 2j 2.6%⇥70%⇥10%⇥2 1 ab e+e� ! ZZ⇤
! 2` 2j 136 ab O(10�2)

e+e� ! H ! ZZ⇤
! 2` 2⌫ 2.6%⇥20%⇥10%⇥2 0.3 ab e+e� ! ZZ⇤

! 2` 2⌫ 39 ab O(10�2)

e+e� ! H ! � � 0.23% 0.65 ab e+e� ! � � 79 pb O(10�8)

It is worth noting that the background cross sections computed with pythia 8 for two-particle final states (e+e� !

qq, cc, bb, ⌧⌧, � �) are found consistent with those obtained running alternative calculators, such as MadGraph 5 [32,
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Table 6. Individual significances (in std. deviations �) expected per decay channel for s-channel Higgs boson production in
e+e� collisions at FCC-ee for Lint = 10 ab�1 and �ps = 4.1MeV. The last column quotes the combined significance.

H ! gg H ! WW⇤
! `⌫ 2j; 2` 2⌫; 4j H ! ZZ⇤

! 2j 2⌫; 2` 2j; 2` 2⌫ H ! bb H ! ⌧had⌧had; cc; � � Combined
1.1� (0.53⌦ 0.34⌦ 0.13)� (0.32⌦ 0.18⌦ 0.05)� 0.13� < 0.02� 1.3�

for any other combination of (�ps,Lint) values achievable through beam monochromatization. Figure 3 shows the
bidimensional maps for the significance of s-channel Higgs production (left) and the corresponding 95% CL upper
limits on the electron Yukawa (right), as a function of both parameters. The signal significance, and associated upper
limits, improve with the square-root of the integrated luminosity (along the x axes of both plots), and diminish for
larger values �ps (along the y axes of the maps) following the relativistic Voigtian dependence of the signal yield on
the energy spread shown in Fig. 1 (right).

Fig. 3. Left: Significance contours (in std. dev. units �) in the c.m. energy spread vs. integrated luminosity plane for the
resonant �

e
+
e
�!H

cross section at
p
s = mH. Right: Associated upper limits contours (95% CL) on the electron Yukawa ye.

The red curves show the range of parameters presently reached in FCC-ee monochromatization studies [20,21]. The red star
indicates the best signal strength monochromatization point in the plane (the pink star over the �ps = �H = 4.1MeV dashed
line, indicates the ideal baseline point assumed in our default analysis). All results are given per IP and per year.

The red curves in Fig. 3 show the current expectations for the range of (�ps,Lint) values achievable at FCC-ee with
the investigated monochromatization schemes [20,21]. Without monochromatization, the FCC-ee natural collision-
energy spread at

p
s = 125GeV is about �ps = 46MeV due to synchrotron radiation. Its reduction to the few-MeV

level desired for the s-channel Higgs run can be accomplished by means of monochromatization, e.g. by introducing
nonzero horizontal dispersions at the IP (D⇤

x) of opposite sign for the two beams in collisions without a crossing

angle. The beam energy spread reduction factor is given by � =
q

(D⇤
x
2�2

�)/("x�
⇤
x) + 1, where �⇤

x(y) denotes the

horizontal (vertical) beta function at the IP and "x(y) the corresponding emittance. The need to generate a significant
IP dispersion implies a change of beamline geometry in the interaction region and the use of crab cavities to compensate
for the existing, or remaining, crossing angle. A nonzero IP dispersion leads to an increase of the transverse horizontal
emittance from beamstrahlung, thereby impacting the beam luminosity. Optimization of the IP optics parameters (D⇤

x,
�⇤
x,y,...) yields the corresponding red curves of Fig. 3. For the lowest collision-energy spread achieved of �ps = 6MeV,

the anticipated monochromatized luminosity per IP exceeds 1035 cm�2s�1 [21]. This translates into an integrated
luminosity4 of at least 1.2 ab�1 per IP per year. One can reach larger integrated luminosities at the expense of a worse
beam energy spread. The point (red star) over the red curves that has the highest signal strength today corresponds to
(�ps,Lint) ⇡ (7MeV, 2 ab�1), to be compared to our original baseline point (pink star) over the �ps = �H = 4.1MeV
dashed line. For such a 7-MeV c.m. energy spread, the peak of the relativistic Voigtian distribution describing the
s-channel cross section is located at about 1MeV above the mass of the Higgs boson (Fig. 1, right). Therefore, the
optimal c.m. energy of the dedicated e+e� run needs also to be carefully chosen to maximize the resonant cross section
for any given monochromatization point.

4 Conversion from luminosity (L = 1035 cm�2s�1) to integrated luminosity (Lint = 1.2 ab�1/year/IP) assumes 185 physics
days per run with a 75% physics e�ciency [27].
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3.4 Analysis summary

We summarize here the significance for both channels, and study the dependence of our
results on the achievable beam spread and luminosity at a future FCC. The significances
possible for each polarization asymmetry for three di↵erent choices of invariant mass cuts
are shown in Fig. 4. The more stringent this cut can be made, the higher the significance
that can be reached. A tighter cut increases the polarization asymmetries by reducing the
continuum background and therefore the denominator of the asymmetry. The achievable
cut depends on the reconstruction precision possible with future FCC detectors.

Figure 4: The significance obtained for the bb̄ and semi-leptonic WW channels for three
di↵erent choices of invariant mass cut. The darker histograms refer to the optimized polar-
angle cuts.

Our analysis relies upon a future FCC complex being able to obtain both small beam en-
ergy spread and significant polarization of both beams. The first requirement is also required
for the inclusive cross section determination of the electron Yukawa coupling, while the sec-
ond is particular to our analysis. It is well known that obtaining significant longitudinal
polarization at an FCC is di�cult, and comes at the expense of luminosity [22]. We study
the dependence on both luminosity and beam energy spread in Fig. 5 for both final states,
for our default values of polarization Pe� = 80%, Pe+ = 30%. Since the significance only
falls o↵ as 1/

p
L, where L is the luminosity, we can still achieve S > 2 in the semi-leptonic

WW channel down to L ⇡ 4 ab�1 as long as the beam spread can be maintained. We can
obtain S > 1 down to L ⇡ 1 ab�1. This remains a factor of two greater than the inclusive
cross section reference significance obtained with L = 10 ab�1.

4 Conclusions

We have studied how the use of single transverse-spin asymmetries can improve on the de-
termination of the electron Yukawa coupling at a future FCC. These observables are linearly
proportional to the electron Yukawa coupling since they arise from quantum interference
between the Higgs signal and the continuum background, while the inclusive cross section
is quadratically proportional to the electron mass. This reduces the suppression associated
with this small quantity. We further study the role of longitudinal polarization of the second
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How to measure deviations of λ
3

di-Higgs single-H

exclusive

global

1. di-H, excl.
• Use of σ+HH,             

 • only deformation of κλ

3. single-H, excl.
• single Higgs processes at higher order
• only deformation of κλ                          

2. di-H, glob.
• Use of σ+HH,                                                  
• deformation of κλ + of the single-H couplings
+a, do not consider the effects at higher order 

of κλ to single H production and decays
+b,  these higher order effects are included    

4. single-H, glob.
• single Higgs processes at higher order
• deformation of κλ + of the single Higgs 

couplings

 The Higgs self-coupling can be assessed using di-Higgs production and 
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of
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di-Higgs single-Higgs

50% sensitivity: establish that h3≠0 at 95%CL

20% sensitivity: 5σ discovery of the SM h3 coupling


5% sensitivity: getting sensitive to quantum corrections to Higgs potential
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 [%]3κ68% CL bounds on 
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CEPC

ILC

FCC-ee

FCC-ee/eh/hh

HE-LHC

HL-LHC

under HH threshold

under HH threshold

di-Higgs single-Higgs

All future colliders combined with HL-LHC

50%
HL-LHC

50% (47%)
HL-LHC

[10-20]%
HE-LHC

50% (40%)
HE-LHC

5%
FCC-ee/eh/hh

25% (18%)
FCC-ee/eh/hh

15%
LE-FCC

n.a.
LE-FCC

-17+24%
    3500FCC-eh

n.a.
    3500FCC-eh

 24% (14%)
     4IP

365FCC-ee

 33% (19%)
     365FCC-ee

 49% (19%)
     240FCC-ee

10%
1000ILC

36% (25%)
1000ILC

27%
 500ILC

38% (27%)
 500ILC

 49% (29%)
 250ILC

 49% (17%)
CEPC

-7%+11%
3000CLIC

49% (35%)
3000CLIC

36%
1500CLIC

49% (41%)
1500CLIC

 50% (46%)
 380CLIC

Higgs@FC WG November 2019

Don’t need to reach HH threshold 

to have access to h3. 


Runs at different energies are essential

(e.g. 240 and 365 GeV)

1

The determination of h3 at FCC-hh 

relies on HH channel, 


for which FCC-ee is of little direct help.

But the extraction of h3 


requires precise knowledge of yt.

1% yt ↔︎ 5% h3


Precision measurement of yt needs FCC-ee.

2

-2 -1 0 1 2
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0.000
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0.015

δκλ

δc
Z

FCC-ee, from SMEFT global fit

Δχ2=1
28-parameter fit
with Higgs & EW data

Z-pole +WW threshold
+ 10.8/ab at 240GeV
+ 3/ab at 365 GeV
without 365GeV run
without 240GeV run
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Higgs @ FCC-hh.

32

Single Higgs production @FCC-hh
σ(13 TeV) σ(100 TeV) σ(100)/σ(13)

ggH (N3LO) 49 pb 803 pb 16

VBF (N2LO) 3.8 pb 69 pb 16

VH (N2LO) 2.3 pb 27 pb 11

ttH (N2LO) 0.5 pb 34 pb 55

Large statistics in various Higgs decay modes allow:

• for % - level precision in statistically limited rare channels (μμ, Zɣ)
• in systematics limited channels, to isolate cleaner samples in regions (e.g. @large Higgs pT) with :

• higher S/B
• smaller (relative) impact of systematic uncertainties 

1/100 1/10 Factor:

reduction in stat. unc.

30

Higgs at large pT

• Huge rates at large pT :

• > 106 Higgs produced with pT > 1 TeV
• Higher probability to produce large pT  Higgs from ttH/

VBF/VH at large
• Even rare decay modes can be accessed at large pT

  
• Opportunity to measure the Higgs in a new dynamical 

regime 

• Higgs pT spectrum highly sensitive to new physics. 

        

ΔR = 0.1

• highly granular sub-detectors:

• Tracker - pixel:10 μm @ 2cm → σηxφ ≈  5 mrad
• Calorimeters:  2 cm @  2m  → σηxφ ≈  10 mrad

•  good energy/pT resolution at large pT:

•     σp / p = 2% @ 1 TeV

• Large rate (> 1010H, > 107 HH)


• unique sensitivity to rare decays (𝛾𝛾, 
𝛾Z, 𝜇𝜇, exotic/BSM)


• few % sensitivity to self-coupling

• Explore extreme phase space: 


• e.g. 106 H w/ pT>1 TeV

• clean samples with high S/B

• small systematics 

ggH (N3LO) VBF (N2LO) WH (N2LO) ZH (N2LO) tt̄H (N2LO) HH (NLO)
N100 24⇥ 109 2.1⇥ 109 4.6⇥ 108 3.3⇥ 108 9.6⇥ 108 3.6⇥ 107

N100/N14 180 170 100 110 530 390

(N100=�100TeV ⇥ 30 ab�1 & N14 =�14TeV ⇥ 3 ab�1)

The Higgs exploration territory 
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Electroweak Factory



CG - Jan. 14, 2025/ 3524

EW Precision 

Measurements 


at FCC-ee 

Table 130 Experimental (statistical and systematic) precision of a selection of measurements
accessible at FCC-ee, compared with the present world-average precision. The FCC-ee
experimental systematic errors (fourth column) are initial estimates from early 2021 [430], and aim
at being improved down to statistical uncertainties (third column) with new ideas and innovative
methods. This set of measurements, together with those of the Higgs boson properties, achieves
indirect sensitivity to new physics up to a scale ⇤ of 70TeV in an E↵ective Field Theory (EFT)
description with dimension-6 operators (Section 8.2), and possibly much higher in specific new
physics (non-decoupling) models.

Observable present FCC-ee FCC-ee Comment and
value ± error Stat. Syst. leading error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan
Beam energy calibration

�Z (keV) 2495200 ± 2300 4 25 From Z line shape scan
Beam energy calibration

sin2
✓
eff
W (⇥106) 231480 ± 160 2 2.4 From Aµµ

FB at Z peak
Beam energy calibration

1/↵QED(m2
Z)(⇥103) 128952 ± 14 3 small From Aµµ

FB o↵ peak
QED&EW errors dominate

RZ
` (⇥103) 20767 ± 25 0.06 0.2-1 Ratio of hadrons to leptons

Acceptance for leptons

↵s(m
2
Z) (⇥104) 1196 ± 30 0.1 0.4-1.6 From RZ

`

�
0
had (⇥103) (nb) 41541 ± 37 0.1 4 Peak hadronic cross-section

Luminosity measurement

N⌫(⇥103) 2996 ± 7 0.005 1 Z peak cross-sections
Luminosity measurement

Rb (⇥106) 216290 ± 660 0.3 < 60 Ratio of bb̄ to hadrons
Stat. extrapol. from SLD

Ab
FB, 0 (⇥104) 992 ± 16 0.02 1-3 b-quark asymmetry at Z pole

From jet charge

Apol,⌧
FB (⇥104) 1498 ± 49 0.15 <2 ⌧ polarization asymmetry

⌧ decay physics

⌧ lifetime (fs) 290.3 ± 0.5 0.001 0.04 Radial alignment

⌧ mass (MeV) 1776.86 ± 0.12 0.004 0.04 Momentum scale

⌧ leptonic (µ⌫µ⌫⌧ ) B.R. (%) 17.38 ± 0.04 0.0001 0.003 e/µ/hadron separation

mW (MeV) 80350 ± 15 0.25 0.3 From WW threshold scan
Beam energy calibration

�W (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan
Beam energy calibration

↵s(m
2
W)(⇥104) 1010 ± 270 3 small From RW

`

N⌫(⇥103) 2920 ± 50 0.8 small Ratio of invis. to leptonic
in radiative Z returns

mtop (MeV) 172740 ± 500 17 small From tt̄ threshold scan
QCD errors dominate

�top (MeV) 1410 ± 190 45 small From tt̄ threshold scan
QCD errors dominate

�top/�
SM
top 1.2 ± 0.3 0.10 small From tt̄ threshold scan

QCD errors dominate

ttZ couplings ± 30% 0.5 – 1.5 % small From
p

s = 365GeV run

529

Table from mid-term report

Experimental (statistical and systematic) precision of a 
selection of measurements accessible at FCC-ee, 

compared with the present world-average precision.  
FCC-ee syst. scaled down from LEP estimates. 
Room for improvement with dedicated studies. 

Note that syst. go down also with stat. 
(e.g. beam energy determination from ee→Z/𝛾 thus

the associated uncertainty decreases with luminosity).
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Example of EW measurements @ Tera Z

8

relative ĮQED uncertainty with 80 ab-1

Why 4 years and ~150 ab-1 at & around the Z pole ?

Excellent experimental control of off-peak di-muon 
asymmetry motivates campaign to collect 50-80 ab-1

off peak to gain highest sensitivity to Z-Ȗ interference  

Allows for clean determination of ĮQED(mZ
2), which 

is a critical input for mW closure tests (see later).

Goal: measure 1/ĮQED(mZ
2) to +/- 0.003.

This dependence, & location of 
half-integer spin tunes, guides the choice 

of off-peak energies: 87.8 & 93.9 GeV. 
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Accessing SM input parameters
   QED(mZ)!    QCD(mZ)!

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 
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γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 
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Combination

!  Combination*of*cross*section*(µµ)*and*AFB*(µµ*and*ττ),*in*a*year*(CW,*4IPs)*

◆  Get*to*2×1045at*√s*≤*70*GeV*(cross*section)*and*88*/*95*GeV*(forward4backward*asym.)*
●  Also*with*cross*section*at*125*GeV*(5×1045),*160*GeV*(8×1045)*or*240*GeV*(1.2×1044)*

Summary*(1)*

29 June 2015 
FCC-ee physics meeting 
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One%crabbed:waist%year%
Four%IP’s%

Janot ’15

LEP measurements with 
(1) new N3LO results
(2) improved mtop

(3) mHiggs

stat. limited

TLEP statistics

Dam @ EPS’15

Christophe Grojean Physics Highlights of future ee colliders CERN, Nov. 19, 2o15/366

Accessing SM input parameters
   QED(mZ)!    QCD(mZ)!

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 

3 

γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 

3 

γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 

3 

γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 

Patrick Janot 

 (GeV)      s
50 60 70 80 90 100 110 120 130 140 150

_/
_b

-510

-410

-310

-210

µµmFrom 
ll
FBFrom A

Combination

!  Combination*of*cross*section*(µµ)*and*AFB*(µµ*and*ττ),*in*a*year*(CW,*4IPs)*

◆  Get*to*2×1045at*√s*≤*70*GeV*(cross*section)*and*88*/*95*GeV*(forward4backward*asym.)*
●  Also*with*cross*section*at*125*GeV*(5×1045),*160*GeV*(8×1045)*or*240*GeV*(1.2×1044)*

Summary*(1)*

29 June 2015 
FCC-ee physics meeting 

22 

One%crabbed:waist%year%
Four%IP’s%

Janot ’15

LEP measurements with 
(1) new N3LO results
(2) improved mtop

(3) mHiggs

stat. limited

TLEP statistics

Dam @ EPS’15

Christophe Grojean Physics Highlights of future ee colliders CERN, Nov. 19, 2o15/366

Accessing SM input parameters
   QED(mZ)!    QCD(mZ)!

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 

3 

γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 

3 

γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 
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Combination

!  Combination*of*cross*section*(µµ)*and*AFB*(µµ*and*ττ),*in*a*year*(CW,*4IPs)*

◆  Get*to*2×1045at*√s*≤*70*GeV*(cross*section)*and*88*/*95*GeV*(forward4backward*asym.)*

●  Also*with*cross*section*at*125*GeV*(5×1045),*160*GeV*(8×1045)*or*240*GeV*(1.2×1044)*

Summary*(1)*

29 June 2015 
FCC-ee physics meeting 
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One%crabbed:waist%year%
Four%IP’s%

Janot ’15

LEP measurements with 
(1) new N3LO results
(2) improved mtop

(3) mHiggs

stat. limited

TLEP statistics

Dam @ EPS’15
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W Mass

Outline
• Presentation based on :  The W mass and width measurement

challenge at FCC-ee in A future Higgs and Electroweak factory (FCC): 
Eur. Phys. J. Plus 136, 1203 (2021), arXiv:2107.04444 

• Two independent W mass and width measurements @FCCee :

1. The mW and ΓW determinations from the WW threshold cross section
lineshape, with 12/ab at ECM ≃ 157.5-162.5 GeV 

2. Other measurements of mW and ΓW from the decay products
kinematics at ECM ≃ 162.5-240-365 GeV 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 3

WW threshold : W mass and width 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 14

Scans of possible E1 E2 data taking energies  and luminosity fractions f (at the E2 point)

ΔmW , ΔΓW:  error on W mass and width from fitting both
ΔmW : error on W mass from fitting only mW

ΔΓW

ΔmW
ΔmW 0.28

0.43

ΔmW =0.45 MeV , ΔΓW=1 MeV (r=-0.6)
ΔmW=0.35 MeV

A -minimum of ΔΓW=0.91 MeV with ΔmW=0.55 MeV
taking data at E1=156.6 GeV E2=162.4 GeV f=0.25

yields ΔmW=0.47 MeV (as single par)

B- minimum of ΔmW=0.28  MeV ΔΓW=3.3 MeV with 
E1=155.5 GeV E2=162.4 GeV f=0.95

yields ΔmW=0.28 MeV (as single par)

C- minimum of ΔΓW=0.96 MeV +ΔmW=0.41 MeV with 
E1=157.5 GeV E2=162.4 GeV f=0.45

yields and   ΔmW=0.37 MeV (as single par)

ways ahead : WW threshold

• Explore in more detail the systematic uncertainties (cancellation) effects with  
multi-point (n≥3) cross section measurements. Evaluate benefits of additional 
model independence.
• reduction / cancellation of acceptance & luminosity systs is of particular interest

• Design a realistic a modern analysis with event classifiers, evaluate performances 
and the corresponding impact of systematic uncertainties. Feedback to theory 
and detector design.

• Explore BSM/EFT interest and utility of multi-point precision "WW measurements 
at threshold, also with other 4f productions (Weq, Zee, ..) 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 26

pmW=0.4 MeV prW=1 MeV

ways ahead : W kinematic reconstruction

• Studies with a LEP-style mW measurement :  verify stat potential with 
different ECM data and study the impact of systematic uncertainties in 
detail : report back to theory and detector design
• Ultimate simultaneous analysis and fit of diboson events (WW, ZZ and Zs) 

to extract mW/mZ with potential cancellations of systematic uncertainties 
both theoretical and experimental 
• Explore alternative kinematic reconstruction methods that do not make 

use of ECM as the ones proposed by ILC. Most demanding on experimental 
systs (energy & momentum calibration of jets and leptons) . Detector 
requirements ?

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 27

pmW , prW= 2-5 MeV ?

Images 
by brgfx 
in Freepik 

?

Comparable
in sensitivity
with value 

from 
EWPO fit.
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Tera-Z EW precision measurements. 
 The target is to reduce syst. uncertainties to the level of stat. uncertainties.


 (exploit the large samples and innovative control analyses) 

 Exquisite √s precision (100keV@Z, 300keV@WW) reduces beam uncertainties  (EPOL)


~50 times better precision than LEP/LSD on EW precision observables

(stat. improvement alone is a factor 300-2’000 and innovative analyses/improved detectors can bring syst. down too) 


27

Table 133 A few sample precision quantities of interest for the FCC-ee programme, their current
and projected experimental uncertainties, and the required theory input for their extraction from
the data. The last two columns show the current state of the art for calculations of this theory
input, and needed higher-order calculations to reach the FCC-ee precision target. See Ref. [435] for
more details.

Quantity Current
precision

FCC-ee stat.
(syst.) precision

Required
theory input

Available calc.
in 2019

Needed theory
improvement†

mZ 2.1MeV 0.004 (0.1)MeV non-resonant
e+e� ! f f̄,
initial-state
radiation (ISR)

NLO,
ISR logarithms
up to 6th order

NNLO for
e+e� ! f f̄�Z 2.3MeV 0.004 (0.025)MeV

sin2 ✓`e↵ 1.6⇥10�4 2(2.4)⇥ 10�6

mW 12MeV 0.25 (0.3)MeV lineshape of
e+e� ! WW
near threshold

NLO (ee ! 4f
or EFT frame-
work)

NNLO for
ee ! WW,
W ! ↵ in
EFT setup

HZZ
coupling

— 0.2% cross-sect. for
e+e� ! ZH

NLO + NNLO
QCD

NNLO
electroweak

mtop 100MeV 17MeV threshold scan
e+e� ! tt̄

N3LO QCD,
NNLO EW,
resummations
up to NNLL

Matching fixed
orders with
resummations,
merging with
MC, ↵s (input)

†The listed needed theory calculations constitute a minimum baseline; additional partial higher-order
contributions may also be required.

Table 134 Required theory calculations for the prediction of the
listed precision quantities within the SM. These predictions are
needed for comparison with the quantities extracted from data (see
table 133), for the purpose of testing the validity of the SM and
probing BSM physics. See Ref. [435] for more details.

Quantity Required
theory input

Available calc.
in 2019

Needed theory
improvement‡

�Z vertex
corrections for
Z ! f f̄

NNLO +
partial higher
orders

N3LO EW +
partial higher
orders

sin2 ✓`e↵

mW SM corrections
to the muon
decay rate

NNLO +
partial higher
orders

N3LO EW +
partial higher
orders

‡ The listed needed theory calculations constitute a minimum baseline;
additional partial higher-order contributions may also be required.

b ! c [545] and the three-loop QED corrections to muon decay [545, 546] were cal-
culated in the Fermi approximation. This third-order correction to the muon and the
heavy quark decay rates calculated in [545] is a milestone in perturbative calculations
and important step towards precision FCC-ee calculations. Particularly, ↵3 QED con-
tribution translates to a shift of the muon lifetime (�9± 1)⇥ 10�8 µs, to be compared
to the current experimental value which is given by ⌧µ = 2.1969811 ± 0.0000022 µs.

564

Indirect sensitivity

to 70TeV-scale sector 


connected to EW/Higgs 

Patrick Janot

2-σ region
(EWPO: stat. unc. only)

HL-LHC
HL + CLIC380
HL + ILC250
HL + FCCee

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

T

S

A couple physics plots from FCC France
q Fit to S and T parameters (representing loop corrections to the Z andW propagators)

u From Jorge de Blas, with only statistical and parametric uncertainties

l The true potential of FCC-ee is one order of magnitude better
è Next step: Devise experimental and theoretical methods to match statistics !

21 Nov. 2019
FCC-ee physics coordination meeting

10

w/ stat. and param. only

(For the impact of the theory uncertainties on the EW fit, see bonus slides)
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‡ The listed needed theory calculations constitute a minimum baseline;
additional partial higher-order contributions may also be required.

b ! c [545] and the three-loop QED corrections to muon decay [545, 546] were cal-
culated in the Fermi approximation. This third-order correction to the muon and the
heavy quark decay rates calculated in [545] is a milestone in perturbative calculations
and important step towards precision FCC-ee calculations. Particularly, ↵3 QED con-
tribution translates to a shift of the muon lifetime (�9± 1)⇥ 10�8 µs, to be compared
to the current experimental value which is given by ⌧µ = 2.1969811 ± 0.0000022 µs.

564

Indirect sensitivity

to 70TeV-scale sector 


connected to EW/Higgs 

Need TH results to fully exploit Tera-Z
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https://arxiv.org/abs/2106.13885
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New Physics Reach @ Z-pole.

28

There are 48 different types of particles that can have tree-level linear interactions to SM.

Vectors

Name S S1 S2 ' ⌅ ⌅1 ⇥1 ⇥3

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Name !1 !2 !4 ⇧1 ⇧7 ⇣

Irrep (3, 1)� 1
3

(3, 1) 2
3

(3, 1)� 4
3

(3, 2) 1
6

(3, 2) 7
6

(3, 3)� 1
3

Name ⌦1 ⌦2 ⌦4 ⌥ �

Irrep (6, 1) 1
3

(6, 1)� 2
3

(6, 1) 4
3

(6, 3) 1
3

(8, 2) 1
2

Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E �1 �3 ⌃ ⌃1

Irrep (1, 1)0 (1, 1)�1 (1, 2)� 1
2

(1, 2)� 3
2

(1, 3)0 (1, 3)�1

Name U D Q1 Q5 Q7 T1 T2

Irrep (3, 1) 2
3

(3, 1)� 1
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 2) 7
6

(3, 3)� 1
3

(3, 3) 2
3

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

Name B B1 W W1 G G1 H L1

Irrep (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2) 1
2

Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrep (1, 2)� 3
2

(3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 3) 2
3

(6̄, 2) 1
6

(6̄, 2)� 5
6

Table 3. New vector bosons contributing to the dimension-six SMEFT at tree level.

new fields of different spin, and Lmixed contains terms of dimension d  4 involving products
of extra fields of different spin. In writing the dimension-five interactions with the heavy
particles we remove redundant operators by using the SM equations of motion. The dots
indicate terms that do not contribute in our approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if they
share the same quantum numbers. However, field rotations and rescalings can always be
performed in such a way that all the kinetic terms in LBSM are diagonal and canonical
and all the mass terms are diagonal in the electroweak symmetric phase. All our equations
are written with this choice of fields (except for the mixing of � and possible scalars '

with L1, see footnote 8). Furthermore, we assume that no fields get a non-trivial gauge-
invariant vacuum expectation value in the symmetric phase. This can always be achieved

– 7 –

Name S S1 S2 ' ⌅ ⌅1 ⇥1 ⇥3

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Name !1 !2 !4 ⇧1 ⇧7 ⇣

Irrep (3, 1)� 1
3

(3, 1) 2
3

(3, 1)� 4
3

(3, 2) 1
6

(3, 2) 7
6

(3, 3)� 1
3

Name ⌦1 ⌦2 ⌦4 ⌥ �

Irrep (6, 1) 1
3

(6, 1)� 2
3

(6, 1) 4
3

(6, 3) 1
3

(8, 2) 1
2

Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E �1 �3 ⌃ ⌃1

Irrep (1, 1)0 (1, 1)�1 (1, 2)� 1
2

(1, 2)� 3
2

(1, 3)0 (1, 3)�1

Name U D Q1 Q5 Q7 T1 T2

Irrep (3, 1) 2
3

(3, 1)� 1
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 2) 7
6

(3, 3)� 1
3

(3, 3) 2
3

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

Name B B1 W W1 G G1 H L1

Irrep (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2) 1
2

Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrep (1, 2)� 3
2

(3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 3) 2
3

(6̄, 2) 1
6

(6̄, 2)� 5
6

Table 3. New vector bosons contributing to the dimension-six SMEFT at tree level.

new fields of different spin, and Lmixed contains terms of dimension d  4 involving products
of extra fields of different spin. In writing the dimension-five interactions with the heavy
particles we remove redundant operators by using the SM equations of motion. The dots
indicate terms that do not contribute in our approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if they
share the same quantum numbers. However, field rotations and rescalings can always be
performed in such a way that all the kinetic terms in LBSM are diagonal and canonical
and all the mass terms are diagonal in the electroweak symmetric phase. All our equations
are written with this choice of fields (except for the mixing of � and possible scalars '

with L1, see footnote 8). Furthermore, we assume that no fields get a non-trivial gauge-
invariant vacuum expectation value in the symmetric phase. This can always be achieved

– 7 –

Name S S1 S2 ' ⌅ ⌅1 ⇥1 ⇥3

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Name !1 !2 !4 ⇧1 ⇧7 ⇣

Irrep (3, 1)� 1
3

(3, 1) 2
3

(3, 1)� 4
3

(3, 2) 1
6

(3, 2) 7
6

(3, 3)� 1
3

Name ⌦1 ⌦2 ⌦4 ⌥ �

Irrep (6, 1) 1
3

(6, 1)� 2
3

(6, 1) 4
3

(6, 3) 1
3

(8, 2) 1
2

Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E �1 �3 ⌃ ⌃1

Irrep (1, 1)0 (1, 1)�1 (1, 2)� 1
2

(1, 2)� 3
2

(1, 3)0 (1, 3)�1

Name U D Q1 Q5 Q7 T1 T2

Irrep (3, 1) 2
3

(3, 1)� 1
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 2) 7
6

(3, 3)� 1
3

(3, 3) 2
3

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

Name B B1 W W1 G G1 H L1

Irrep (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2) 1
2

Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrep (1, 2)� 3
2

(3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)� 5
6

(3, 3) 2
3

(6̄, 2) 1
6

(6̄, 2)� 5
6

Table 3. New vector bosons contributing to the dimension-six SMEFT at tree level.

new fields of different spin, and Lmixed contains terms of dimension d  4 involving products
of extra fields of different spin. In writing the dimension-five interactions with the heavy
particles we remove redundant operators by using the SM equations of motion. The dots
indicate terms that do not contribute in our approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if they
share the same quantum numbers. However, field rotations and rescalings can always be
performed in such a way that all the kinetic terms in LBSM are diagonal and canonical
and all the mass terms are diagonal in the electroweak symmetric phase. All our equations
are written with this choice of fields (except for the mixing of � and possible scalars '

with L1, see footnote 8). Furthermore, we assume that no fields get a non-trivial gauge-
invariant vacuum expectation value in the symmetric phase. This can always be achieved

– 7 –

Scalars Fermions

de Blas, Criado, Perez-Victoria, Santiago, arXiv: 1711.10391

They are not all affecting EW observables at tree-level. 

https://arxiv.org/abs/1711.10391
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New Physics Reach @ Z-pole.

28

There are 48 different types of particles that can have tree-level linear interactions to SM.

Scalars Fermions

They are not all affecting EW observables at tree-level. 

However, all, but a few, have leading log. running into EW observables.

Allwicher, McCullough, Renner, arXiv: 2408.03992

Tree-level matching and running from 1 TeV to Z mass.

W- and Z-pole observables only (no Higgs, no LEP-2 like observables) 

Vectors

https://arxiv.org/abs/2408.03992
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New Physics Reach @ Z-pole.

28

There are 48 different types of particles that can have tree-level linear interactions to SM.

Importance of controlling/reducing the TH syst. errors to exploit Z-pole data. 

Role of ZH and tt runs.
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New Physics Reach @ Z-pole.

28

There are 48 different types of particles that can have tree-level linear interactions to SM.

Importance of full 1-loop matching

(finite pieces matter)
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New Physics Reach @ Z-pole.

28

There are 48 different types of particles that can have tree-level linear interactions to SM.

  Tera-Z programme gives comprehensive coverage of new physics coupled to SM.  

If a signature shows up elsewhere, it will also show up at Tera-Z.


Tera-Z is not just a high-power LEP exploring the EW sector.
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FCC-ee as a flavour factory
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Flavours		:	B	anomalies,	τ	physics,	…	
q  Lepton	flavour	universality	is	challenged	in	b	�	s	!+!�		transitions	@	LHCb	

◆  This	effect,	if	real,	could	be	enhanced	for		!	=	τ,	in	B→	K(*)	τ+τ- 	
●  Extremely	challenging	in	hadron	colliders	
●  With	1012	Z	→	bb,	FCC-ee	is	beyond	any	foreseeable	competition	

➨  Decay	can	be	fully	reconstructed;	full	angular	analysis	possible	

	

q  Not	mentioning	lepton-flavour-violating	decays		
◆  BR(Z	→	eτ,	µτ)	down	to	10-9	(improved	by	104)	

◆  BR(τ	→	µγ, µµµ)	down	to	a	few	10-10	
◆  	τ lifetime	vs	BR(τ	→	eνeντ,µνµντ)	:	lepton	universality	tests	

CERN, 7-11 Jan 2019 
FCC-ee workshop: Theory and Experiment 

20 

B0→ K* (892) τ+τ�  

~SM 

- Also	100,000	BS → τ+τ� @	FCC-ee	
Reconstruction	efficiency	under	study 

J.F.	Kamenik	et	al.	
arXiv:1705.11106	

Talk from A. Bondar 
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S. Monteil Flavours @ FCC6

1. Anticipated landscape of Flavours - at start of FCC

Decay mode/Experiment Belle II (50/ab) LHCb Run I LHCb Upgr. (50/fb) FCC-ee

EW/H penguins

B
0 ! K

⇤
(892)e

+
e
� ⇠ 2000 ⇠ 150 ⇠ 5000 ⇠ 200000

B(B0 ! K
⇤
(892)⌧

+
⌧
�
) ⇠ 10 – – ⇠ 1000

Bs ! µ
+
µ
�

n/a ⇠ 15 ⇠ 500 ⇠ 800

B
0 ! µ

+
µ
� ⇠ 5 – ⇠ 50 ⇠ 100

B(Bs ! ⌧
+
⌧
�
)

Leptonic decays

B
+ ! µ

+
⌫mu 5% – – 3%

B
+ ! ⌧

+
⌫tau 7% – – 2%

B
+
c ! ⌧

+
⌫tau n/a – – 5%

CP / hadronic decays

B
0 ! J/ KS (�sin(2�d)) ⇠ 2. ⇤ 106 (0.008) 41500 (0.04) ⇠ 0.8 · 106 (0.01) ⇠ 35 · 106 (0.006)

Bs ! D
±
s K

⌥
n/a 6000 ⇠ 200000 ⇠ 30 · 106

Bs(B
0
) ! J/ � (��s rad) n/a 96000 (0.049) ⇠ 2.10

6
(0.008) 16 · 106 (0.003)

•�The Belle II and LHCb experiments are complementary in their Physics reach. Belle II 
will mostly dominate the CP eigenstates measurements w/ B-mesons, LHCb’s realm will 
be on fully charged final states for all b-hadron species.  The FCC-ee experiments will 
compete favourably everywhere.
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Flavours @ FCC

A- Particle production at the Z pole: 

• About 15 times the nominal Belle II anticipated statistics for B0 and B+.
• All species of b-hadrons are produced. 
• Expect ~4.109  Bc-mesons assuming 

   

7S. Monteil

2) FCC-ee ABCD specifics for Flavour Physics.

Working point Lumi. / IP [1034 cm�2.s�1] Total lumi. (2 IPs) Run time Physics goal

Z first phase 100 26 ab�1 /year 2
Z second phase 200 52 ab�1 /year 2 150 ab�1

fBc/(fBu + fBd) ⇠ 3.7 · 10�3

Particle production (109) B0 / B
0

B+ / B� B0
s / B

0
s ⇤b / ⇤b cc ⌧�/⌧+

Belle II 27.5 27.5 n/a n/a 65 45
FCC-ee 300 300 80 80 600 150

Flavour potential.
At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables.


The large statistics of FCC will open on-shell opportunities. 

FCC-ee 

=


 10 x Belle II  

https://indico.cern.ch/event/1186057/contributions/5014277/attachments/2506354/4306588/FCC_FlavoursTheory_monteil_20220912.pdf
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Flavours		:	B	anomalies,	τ	physics,	…	
q  Lepton	flavour	universality	is	challenged	in	b	�	s	!+!�		transitions	@	LHCb	

◆  This	effect,	if	real,	could	be	enhanced	for		!	=	τ,	in	B→	K(*)	τ+τ- 	
●  Extremely	challenging	in	hadron	colliders	
●  With	1012	Z	→	bb,	FCC-ee	is	beyond	any	foreseeable	competition	

➨  Decay	can	be	fully	reconstructed;	full	angular	analysis	possible	

	

q  Not	mentioning	lepton-flavour-violating	decays		
◆  BR(Z	→	eτ,	µτ)	down	to	10-9	(improved	by	104)	

◆  BR(τ	→	µγ, µµµ)	down	to	a	few	10-10	
◆  	τ lifetime	vs	BR(τ	→	eνeντ,µνµντ)	:	lepton	universality	tests	

CERN, 7-11 Jan 2019 
FCC-ee workshop: Theory and Experiment 
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B0→ K* (892) τ+τ�  

~SM 

- Also	100,000	BS → τ+τ� @	FCC-ee	
Reconstruction	efficiency	under	study 

J.F.	Kamenik	et	al.	
arXiv:1705.11106	

Talk from A. Bondar 
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S. Monteil Flavours @ FCC6

1. Anticipated landscape of Flavours - at start of FCC

Decay mode/Experiment Belle II (50/ab) LHCb Run I LHCb Upgr. (50/fb) FCC-ee

EW/H penguins

B
0 ! K

⇤
(892)e

+
e
� ⇠ 2000 ⇠ 150 ⇠ 5000 ⇠ 200000

B(B0 ! K
⇤
(892)⌧

+
⌧
�
) ⇠ 10 – – ⇠ 1000

Bs ! µ
+
µ
�

n/a ⇠ 15 ⇠ 500 ⇠ 800

B
0 ! µ

+
µ
� ⇠ 5 – ⇠ 50 ⇠ 100

B(Bs ! ⌧
+
⌧
�
)

Leptonic decays

B
+ ! µ

+
⌫mu 5% – – 3%

B
+ ! ⌧

+
⌫tau 7% – – 2%

B
+
c ! ⌧

+
⌫tau n/a – – 5%

CP / hadronic decays

B
0 ! J/ KS (�sin(2�d)) ⇠ 2. ⇤ 106 (0.008) 41500 (0.04) ⇠ 0.8 · 106 (0.01) ⇠ 35 · 106 (0.006)

Bs ! D
±
s K

⌥
n/a 6000 ⇠ 200000 ⇠ 30 · 106

Bs(B
0
) ! J/ � (��s rad) n/a 96000 (0.049) ⇠ 2.10

6
(0.008) 16 · 106 (0.003)

•�The Belle II and LHCb experiments are complementary in their Physics reach. Belle II 
will mostly dominate the CP eigenstates measurements w/ B-mesons, LHCb’s realm will 
be on fully charged final states for all b-hadron species.  The FCC-ee experiments will 
compete favourably everywhere.
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Flavours @ FCC

A- Particle production at the Z pole: 

• About 15 times the nominal Belle II anticipated statistics for B0 and B+.
• All species of b-hadrons are produced. 
• Expect ~4.109  Bc-mesons assuming 

   

7S. Monteil

2) FCC-ee ABCD specifics for Flavour Physics.

Working point Lumi. / IP [1034 cm�2.s�1] Total lumi. (2 IPs) Run time Physics goal

Z first phase 100 26 ab�1 /year 2
Z second phase 200 52 ab�1 /year 2 150 ab�1

fBc/(fBu + fBd) ⇠ 3.7 · 10�3

Particle production (109) B0 / B
0

B+ / B� B0
s / B

0
s ⇤b / ⇤b cc ⌧�/⌧+

Belle II 27.5 27.5 n/a n/a 65 45
FCC-ee 300 300 80 80 600 150

Flavours @ FCC

B- The Boost at the Z:

• Fragmentation of the b-quark: 
• Makes possible a topological rec. of the decays w/ miss. energy.

C- Versatility : the Z pole does not saturate all Flavour possibilities. Beyond 
the obvious flavour-violating Higgs and top decays, the WW operation will 
enable to collect several 108 W decays on-shell AND boosted. Direct 
access to CKM matrix elements.

D- Comparison w/ LHC and B-factory. Advantageous attributes:

8S. Monteil

2) FCC-ee ABCD specifics for Flavour Physics.
hEXbi = 75%⇥ Ebeam; h��i ⇠ 6.

Flavour @ FCC vs Belle/pp

Flavour potential.
At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables.


The large statistics of FCC will open on-shell opportunities. 

FCC-ee 

=


 10 x Belle II  

https://indico.cern.ch/event/1186057/contributions/5014277/attachments/2506354/4306588/FCC_FlavoursTheory_monteil_20220912.pdf
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1. Anticipated landscape of Flavours - at start of FCC

Decay mode/Experiment Belle II (50/ab) LHCb Run I LHCb Upgr. (50/fb) FCC-ee

EW/H penguins
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Leptonic decays
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⌫tau n/a – – 5%

CP / hadronic decays
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0 ! J/ KS (�sin(2�d)) ⇠ 2. ⇤ 106 (0.008) 41500 (0.04) ⇠ 0.8 · 106 (0.01) ⇠ 35 · 106 (0.006)
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⌥
n/a 6000 ⇠ 200000 ⇠ 30 · 106
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•�The Belle II and LHCb experiments are complementary in their Physics reach. Belle II 
will mostly dominate the CP eigenstates measurements w/ B-mesons, LHCb’s realm will 
be on fully charged final states for all b-hadron species.  The FCC-ee experiments will 
compete favourably everywhere.
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Flavours @ FCC

A- Particle production at the Z pole: 

• About 15 times the nominal Belle II anticipated statistics for B0 and B+.
• All species of b-hadrons are produced. 
• Expect ~4.109  Bc-mesons assuming 

   

7S. Monteil

2) FCC-ee ABCD specifics for Flavour Physics.

Working point Lumi. / IP [1034 cm�2.s�1] Total lumi. (2 IPs) Run time Physics goal

Z first phase 100 26 ab�1 /year 2
Z second phase 200 52 ab�1 /year 2 150 ab�1

fBc/(fBu + fBd) ⇠ 3.7 · 10�3

Particle production (109) B0 / B
0

B+ / B� B0
s / B

0
s ⇤b / ⇤b cc ⌧�/⌧+

Belle II 27.5 27.5 n/a n/a 65 45
FCC-ee 300 300 80 80 600 150

Flavours @ FCC

B- The Boost at the Z:

• Fragmentation of the b-quark: 
• Makes possible a topological rec. of the decays w/ miss. energy.

C- Versatility : the Z pole does not saturate all Flavour possibilities. Beyond 
the obvious flavour-violating Higgs and top decays, the WW operation will 
enable to collect several 108 W decays on-shell AND boosted. Direct 
access to CKM matrix elements.

D- Comparison w/ LHC and B-factory. Advantageous attributes:

8S. Monteil

2) FCC-ee ABCD specifics for Flavour Physics.
hEXbi = 75%⇥ Ebeam; h��i ⇠ 6.

Flavour @ FCC vs Belle/pp

Flavour potential.
At present (Z/h/NewPhysics) FCNCs mostly constrained by low energy observables.


The large statistics of FCC will open on-shell opportunities. 

FCC-ee 

=


 10 x Belle II  

Flavour defines shared (vertexing, tracking, calorimetry) and specific (hadronic PID) detector requirements. 

https://indico.cern.ch/event/1186057/contributions/5014277/attachments/2506354/4306588/FCC_FlavoursTheory_monteil_20220912.pdf
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FCC-ee flavour opportunities.
• CKM element Vcb (critical for normalising the Unitarity Triangle) from WW decays 


• Tau physics (>1011 pairs of tau’s produced in Z decays)

๏ test of lepton flavour universality: GF from tau decays @ 10 ppm @ FCC-ee (0.5 ppm from muon decays)

๏ lepton flavour violation:

‣ 𝜏→𝜇𝛾 : 4x10-8 @Belle2021→10-9 @ FCC-ee


‣ 𝜏→3𝜇 : 2x10-8 @Belle → 3x10-10 @BelleII  → 10-11 @ FCC-ee

๏ tau lifetime uncertainty:

‣ 2000 ppm → 10 ppm


๏ tau mass uncertainty:

‣ 70 ppm → 14 ppm


• Semi-leptonic mixing asymmetries assl and adsl


• …
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Exploration potential at high-energy
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Resonance production.
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Fig. 364 The number of resonance production events at a 100TeV proton collider, relative to the
model-dependent factor r defined in Eq. (18). A non-exhaustive variety of initial states ‘yy’ are
considered and the final-state decay product ‘yy” are unspecified.

Another key component of exploration combines breadth with energy. As a figure
of merit, proton colliders can be compared with lepton colliders to assess their relative
reach in energy for resonances. Following [542] consider an optimistic scenario where a
new high-energy resonance (serendipitously) resides at the kinematic limit of a lepton
collider and can be produced by that initial state.8 Then one may ask, given the same
integrated luminosity, which energy of proton collisions would be necessary to produce
the same number of resonant events?

The resulting equivalent CM-energy is shown in Fig. 363, under the assumption
that the parton-level production cross sections are a factor � = 1, 10, 100 greater than
the lepton-collider production cross section on resonance for qq and gg initial states.
It is noteworthy that even under the significant assumption that the production cross
section via leptons matches that of quarks or gluons (� = 1), for such a resonance we
see that a 100 TeV proton collider significantly exceeds the reach of a 10 TeV lepton
collider. For larger parton production cross sections relative to leptons the gap in
coverage between the two classes of facility only increases. Such a comparison, however,
also conceals the richness of the physics programme for such > 10 TeV resonances at
a proton collider.

To investigate this further, consider the direct discovery prospects for narrow reso-
nances of mass MR > 10 TeV, which would be inaccessible to a 10 TeV muon collider.
In the narrow width approximation, at a proton collider operating at proton CM
energy

p
s, the production cross section for a resonance ‘R’ of spin S coupled to the

initial state partons yy and decaying into the final state xx is

� = r
Cyy

s
(16)

8Note that for lower masses radiative return production would be required to enable discovery.
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Plot from mid-term report

# resonances produced
Eur. Phys. J. C           (2019) 79:474 Page 21 of 161   474 

Fig. S.5 Left: FCC-hh mass reach for different s-channel resonances.
Right: summary of heavy sterile neutrino discovery prospects at all FCC
facilities. Solid lines are shown for direct searches at FCC-ee (black, in

Z decays), FCC-hh (blue in W decays) and FCC-eh (in production from
the incoming electron). The dashed line denotes the impact on precision
measurements at the FCC-ee, it extends up to more than 60 TeV

QCD matter at high density and temperature

Collisions of heavy ions at the energies and luminosities allowed by the FCC-hh will open new avenues in the study of
collective properties of quark and gluons.

The thermodynamic behaviour of Quantum Chromodynamics (QCD) presents features that are unique amongst all other
interactions. Collisions of heavy ions at the energies and luminosities allowed by the FCC-hh will open new avenues in the
study of collective properties of quark and gluons, as extensively shown in the CDR volume 1. Heavy ions accelerated to FCC
energies give access to an uncharted parton kinematic region at x down to 10−6, which can be explored also exploiting the
complementarity of proton–nucleus and electron–nucleus collisions at the FCC-hh/eh. The quark gluon plasma (QGP) could
reach a temperature as high as 1 GeV, at which charm quarks start to contribute as active thermal degrees of freedom in the
equation of state of the QGP. In the studies of the QGP with hard probes the FCC has a unique edge, thanks to cross section
increases with respect to LHC by factors ranging from ∼ 20 for Z+jet production, to ∼ 80 for top production. Just one example
is presented here: FCC will provide large rates of highly-boosted top quarks and the qq jets from t → W → qq are exposed
to energy loss in the QGP with a time delay (see Fig. S.6-left), providing access to time-dependent density measurements for
the first time. The effect of this time-delayed quenching can be measured using the reduction of the reconstructed W mass,
as shown in Fig. S.6-right, where the modifications under different energy loss scenarios are considered as examples.

Parton structure

The FCC-eh resolves the parton structure of the proton in an unprecedented range of x and Q2 to very high accuracy, providing
a per mille accurate measurement of the strong coupling constant.

Deep inelastic scattering measurements at FCC-eh will allow the determination of the PDF luminosities with the pre-
cision shown in Fig. S.7. These results provide an essential input for the FCC-hh programme of precision measurements
and improve the sensitivity of the search for new phenomena, particularly at high mass. The FCC-eh measurements
will extend the exploration of parton dynamics into previously unexplored domains: the access to very low Bjorken-x
is expected to expose the long-predicted BFKL dynamic behaviour and the gluon saturation phenomena required to uni-
tarise the high-energy cross sections. The determination of the gluon luminosity at very small x will also link directly
to ultra-high energy (UHE) neutrino astroparticle physics, enabling more reliable estimates of the relevant background
rates.

123

Plot from FCC CDR 

FCC-hh mass reach

Protons are made of 5 quarks, gluons, photons, W/Z


FCC-hh effectively collides 196 different initial states = perfect exploratory machine

https://inspirehep.net/literature/1713706
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Resonance production.
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Fig. 364 The number of resonance production events at a 100TeV proton collider, relative to the
model-dependent factor r defined in Eq. (18). A non-exhaustive variety of initial states ‘yy’ are
considered and the final-state decay product ‘yy” are unspecified.

Another key component of exploration combines breadth with energy. As a figure
of merit, proton colliders can be compared with lepton colliders to assess their relative
reach in energy for resonances. Following [542] consider an optimistic scenario where a
new high-energy resonance (serendipitously) resides at the kinematic limit of a lepton
collider and can be produced by that initial state.8 Then one may ask, given the same
integrated luminosity, which energy of proton collisions would be necessary to produce
the same number of resonant events?

The resulting equivalent CM-energy is shown in Fig. 363, under the assumption
that the parton-level production cross sections are a factor � = 1, 10, 100 greater than
the lepton-collider production cross section on resonance for qq and gg initial states.
It is noteworthy that even under the significant assumption that the production cross
section via leptons matches that of quarks or gluons (� = 1), for such a resonance we
see that a 100 TeV proton collider significantly exceeds the reach of a 10 TeV lepton
collider. For larger parton production cross sections relative to leptons the gap in
coverage between the two classes of facility only increases. Such a comparison, however,
also conceals the richness of the physics programme for such > 10 TeV resonances at
a proton collider.

To investigate this further, consider the direct discovery prospects for narrow reso-
nances of mass MR > 10 TeV, which would be inaccessible to a 10 TeV muon collider.
In the narrow width approximation, at a proton collider operating at proton CM
energy

p
s, the production cross section for a resonance ‘R’ of spin S coupled to the

initial state partons yy and decaying into the final state xx is

� = r
Cyy
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(16)

8Note that for lower masses radiative return production would be required to enable discovery.
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Fig. S.5 Left: FCC-hh mass reach for different s-channel resonances.
Right: summary of heavy sterile neutrino discovery prospects at all FCC
facilities. Solid lines are shown for direct searches at FCC-ee (black, in

Z decays), FCC-hh (blue in W decays) and FCC-eh (in production from
the incoming electron). The dashed line denotes the impact on precision
measurements at the FCC-ee, it extends up to more than 60 TeV

QCD matter at high density and temperature

Collisions of heavy ions at the energies and luminosities allowed by the FCC-hh will open new avenues in the study of
collective properties of quark and gluons.

The thermodynamic behaviour of Quantum Chromodynamics (QCD) presents features that are unique amongst all other
interactions. Collisions of heavy ions at the energies and luminosities allowed by the FCC-hh will open new avenues in the
study of collective properties of quark and gluons, as extensively shown in the CDR volume 1. Heavy ions accelerated to FCC
energies give access to an uncharted parton kinematic region at x down to 10−6, which can be explored also exploiting the
complementarity of proton–nucleus and electron–nucleus collisions at the FCC-hh/eh. The quark gluon plasma (QGP) could
reach a temperature as high as 1 GeV, at which charm quarks start to contribute as active thermal degrees of freedom in the
equation of state of the QGP. In the studies of the QGP with hard probes the FCC has a unique edge, thanks to cross section
increases with respect to LHC by factors ranging from ∼ 20 for Z+jet production, to ∼ 80 for top production. Just one example
is presented here: FCC will provide large rates of highly-boosted top quarks and the qq jets from t → W → qq are exposed
to energy loss in the QGP with a time delay (see Fig. S.6-left), providing access to time-dependent density measurements for
the first time. The effect of this time-delayed quenching can be measured using the reduction of the reconstructed W mass,
as shown in Fig. S.6-right, where the modifications under different energy loss scenarios are considered as examples.

Parton structure

The FCC-eh resolves the parton structure of the proton in an unprecedented range of x and Q2 to very high accuracy, providing
a per mille accurate measurement of the strong coupling constant.

Deep inelastic scattering measurements at FCC-eh will allow the determination of the PDF luminosities with the pre-
cision shown in Fig. S.7. These results provide an essential input for the FCC-hh programme of precision measurements
and improve the sensitivity of the search for new phenomena, particularly at high mass. The FCC-eh measurements
will extend the exploration of parton dynamics into previously unexplored domains: the access to very low Bjorken-x
is expected to expose the long-predicted BFKL dynamic behaviour and the gluon saturation phenomena required to uni-
tarise the high-energy cross sections. The determination of the gluon luminosity at very small x will also link directly
to ultra-high energy (UHE) neutrino astroparticle physics, enabling more reliable estimates of the relevant background
rates.
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Plot from FCC CDR 

FCC-hh mass reach

FCC-hh allows the direct exploration of new physics at energy scales up to 40 TeV, including 

any physics that may be indirectly indicated by precision Higgs and EW measurements at FCC-ee.

Protons are made of 5 quarks, gluons, photons, W/Z


FCC-hh effectively collides 196 different initial states = perfect exploratory machine

https://inspirehep.net/literature/1713706
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Pushing limits of SUSY.

Plot from arXiv:1606.00947 
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Fig. 38: Sensitivity for simplified models considered in this section for the LHC, HL-LHC, and a pp collider
at

p
s = 100 TeV with data samples of 3 ab�1 and 30 ab�1. The reach for strong-production at 14 TeV is

quantified by 95% confidence level upper mass limits on the mass of squarks or gluinos (or both) when the LSP
is massless, and is taken from ATLAS and CMS projections [142, 277–280], or from this document in the case
of the egeg ! tt̄e�0

1
tt̄e�0

1
model. Sensitivity for

p
s = 100 TeVand 3 ab�1 is quantified by the 5� discovery reach

presented in this document. The 30 ab�1 reach is from this document when available, otherwise it is projected
from the 3 ab�1 reach using the Collider Reach web tool [281].

100 TeV is rich enough to provide an excellent tool to carry out such explorations at high energies.
If no discoveries are made at the LHC, the simplest versions of low-energy supersymmetry would

be ruled out. This would be a momentous result, as supersymmetry has played a central role in the
conceptual development of our field for decades. In this sense, the era of natural supersymmetry would
come to an end. However, in such an instance it would be incorrect to conclude that the naturalness
principle is misguided. Excluding new dynamics at the weak scale would mean ruling out our favoured
solutions to the naturalness problem, but not the problem itself, and knowing how nature deals with
Higgs naturalness will remain a standing issue. This reframing of the naturalness question would imply
the loss of the logical connection between Higgs naturalness and new phenomena at the TeV scale. If
this connection is lost, what would be so special about the energy scale explored by a 100 TeV collider
and why should we expect new phenomena in that range?

In spite of its virtues at a more fundamental level, supersymmetry may not be the answer to Higgs
naturalness. Speculations have been made about logical schemes that deal with Higgs naturalness without
dynamics at the weak scale, such as the anthropic principle or cosmological relaxation. Intriguingly, even
within these very different schemes, motivations for supersymmetry emerge, although at a scale different
than the weak scale and also for different reasons. In the context of unnatural setups, considerations
discussed in Sec. 3.1 about dark matter, gauge coupling unification, or the Higgs mass, or the limited
cutoff that can be achieved in cosmological relaxation scenarios call for supersymmetry with a certain
preference for the O(10’s)TeV range. Fig. 38 demonstrates that this energy range is prime territory for a
100 TeV collider.
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15-20TeV squarks/gluinos  

require kinematic threshold 30-40TeV:


FCC-hh is more than a √ŝ~10TeV factory 

3 ab–1

30 ab–1
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N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, 

arXiv:1605.08744

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, 

arXiv:1504.07617

tbH+ →tbτν
tbH+ →tbtb

bbH0/A0 →bbττ
bbH0/A0 →bbtt
t(t)H0/A0 →t(t)tt

LHC 3 ab–1

LHC 0.3 ab–1

MSSM Higgs @ 100 TeV

20 TeV20 TeV

 Factor 10 increase on the HL-LHC limits. 

Plot from arXiv:1605.08744 and  arXiv:1504.07617 

https://arxiv.org/abs/1606.00947
https://arxiv.org/abs/1605.08744
https://arxiv.org/abs/1504.07617
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Conclusions & Outlook

A circular “Higgs factory” like FCC-ee has a rich potential:

⦿ Quantum leap in testing the Standard Model


     ⦿ Search directly *and* indirectly for New Physics

And FCC-ee is the springboard to the energy frontier.


The FCC project perfectly fits the needs of HEP after LHC:

▶︎ guaranteed deliverables & broad exploration potential ◀︎

◦ Much progress in the course of the Feasibility Study:
‣ 4 IPs as baseline 
‣ new RF system totally flexible between 90 and 240 GeV
‣ new optics design with more luminosity
‣ identification of other  science opportunities 

◦ LHC changed the HEP landscape (Higgs and nothing else - yet?)
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FCC Feasibility Organisation Chart.

Many opportunities to engage.
Get in touch with the WG conveners!

Links:
○ FCC feasibility study
○ Physics, Experiments and Detectors (PED)

https://fcc.web.cern.ch
https://fcc-ped.web.cern.ch/homepage?page=0
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FCC: an international enterprise.Status of FCC global collaboration

141 
Institutes

32 
countries

+ 
CERN

Increasing international collaboration as a prerequisite for success:
→links with science, research & development and high-tech industry will be essential to further 
advance and prepare the implementation of FCC

FCC Feasibility Study: 
Aim is to increase further the collaboration,
on all aspects, in particular on
Accelerator and Particle/Experiments/Detectors 
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Some work ahead of us.
• Development of a common software and the estimate of the computing needs


• Evaluation of the physics performance and requirements for detectors


• Conceptualisation of detectors capable of delivering these requirements


• Mitigation of the interaction region constraints on detectors and vice versa


• Design of methods and tools for centre-of-mass energy calibration, beam 
polarisation, and monochromatization 


• Understanding and optimisation of the physics programm


• Exploration of the physics opportunities


• Development of the theoretical tools and observables needed to meet the 
measurement targets
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Construction Cost/Cost of Operation
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Main domains for the FCC-ee project :
•  Accelerators: 3 847 MCHF
•  Injectors & transfer lines: 585 MCHF
•  Civil engineering: 5 538 MCHF
•  Technical infrastructures: 2 490 MCHF
•  Experiments: 150 MCHF
•  Territorial development: 191 MCHF

The total cost for FCC-ee, considering two IPs for experiments and the first three stages of operation (Z, W and ZH) is estimated to be 12 801 MCHF.

•  2 → 4 IPs: + 710 MCHF

• 365 GeV run: +1 465 MCHF

Construction cost
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❑ FCC-ee	total	instantaneous	power	demand	at	each	centre-of-mass	energies


◆ At	240	GeV,	the	instantaneous	power	of	FCC-ee	amounts	to	291	MW

● As	a	comparison,	P(ILC250)=140	MW,	P(CLIC380)=110	MW	:		less	power	hungry	than	FCC-ee?	


➨ Not	clear:	both	produce	(2	to	4	times)	less	Higgs	than	FCC-ee240	,	with	(3	to	6	times)	longer	running	time

43

Ongoing	R&D

Ongoing	R&D

Potential	energy	savings

J.-P. Burnet, FCC Week’22

Energy and carbon footprint
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❑ Our	first	responsibility	(as	particle	physicists)	is	to	do	the	maximum	of	science

◆ With	the	minimal	energy	consumption	and	the	minimal	environmental	impact	for	our	planet


● Should	become	one	of	our	top-level	decision	criteria	for	design,	choice	and	optimization	of	a	collider


❑ All	Higgs	factories	have	a	“similar”	physics	outcome	(ESU’20	and	Snowmass’21)

◆ Natural	question:	what	is	their	energy	consumpti0n	or	carbon	footprint	for	the	same	physics	outcome?


● Circular	colliders	have	a	much	larger	instantaneous	luminosity	and	operate	several	detectors

● FCC-ee	is	at	CERN,	where	electricity	is	already	almost	carbon-free	(and	will	be	even	more	so	in	2048)
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arXiv:2208.10466

2 IPs 2 IPs

Carbon footprint / Higgs with 2IP

FCC-ee ~ CLIC / 5 ~ ILC / 50Energy consumption / Higgs with 2IP


Circular ~ Linear / 5
(independently of the location


or the starting time of the collider)

(if operating today)

Energy and carbon footprint



CG - Jan. 14, 2025/ 3545

target costs, and that the additional time given to the hadron collider by the FCC-ee programme
may well result, by virtue of a longer R&D period, in some combination of lower cost and higher
performance, that could be set off against the FCC-ee cost. The physics case of the FCC-ee,
however, justifies the initial investment in its own right.

17.2 What are the Costs of Operating FCC-ee?

The total electrical energy consumption over the fourteen years of the FCC-ee research programme
is estimated to be around 27 TWh [58], corresponding to an average electricity consumption of 1.9
TWh/year over the entire operation programme, to be compared with the 1.2 TWh/year consumed
by CERN today and the expected 1.4 TWh/year for HL-LHC9. At the CERN electricity prices
from 2014/15, the electricity cost for FCC-ee collider operation would be about 85 MEuro per
year. In the HZ running mode, about one million Higgs bosons are expected to be produced in
three years, which sets the price of each FCC-ee Higgs boson at 255 Euros. A similar exercise can
be done for the first stage of CLIC, expected to consume 0.8 TWh/year over 8 years at 380GeV
to produce about 150,000 Higgs bosons, which sets the price of a CLIC Higgs boson at about 2000
Euros. Finally, with the official ILC operation cost in Japan of 330 MEuro per year [10], its 11.5 to
18.5 years of operation (Section 5), and the 500,000 Higgs bosons produced in total, the price of an
ILC Higgs boson is between 7,000 and 12,000 Euros, i.e., between 30 and 50 times more expensive
than at FCC-ee. These operation costs are summarized in Table 8.

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider ILC250 CLIC380 FCC-ee240
Cost (Euros/Higgs) 7,000 to 12,000 2,000 255

18 Can FCC-ee be the First Stepping Stone for the Future

of our Field?

This question is key in the choice for the next facility. It is often argued that high-energy physics
needs an e

+
e
� Higgs factory; that it should preferably be built with a technology that is important

for the future of the field; that circular e+e� colliders are limited in centre-of-mass energy because of
synchrotron radiation; that therefore linear colliders are the only way to go to higher energies, and
hence the next machine should be a linear collider. However, there are strong counterarguments.

18.1 Is a linear collider the best “Electroweak and Higgs Factory" that
can be built?

Figure 3 gives the answer for a low-energy Higgs Factory: circular colliders are an order-of-
magnitude superior in luminosity than the linear colliders that are on the table, namely CLIC
and ILC. The cross-over in luminosity occurs at a centre-of-mass energy around 400 GeV. All the
other particles of the Standard Model, and specifically the four heaviest ones, the Z, the W, the
Higgs and the top, can be produced below this energy. Besides, the availability of two (and per-
haps four) collision points, of exquisite beam energy calibration to one part per million, and the
huge luminosities at the Z pole and the WW threshold, are all in favour of a circular machine.
Control of the e

± beam helicity is very interesting and convenient but, in most cases, equivalent
information can be obtained by other means, such as final-state polarization measurements or an-
gular distributions, as discussed above (Section 8). High-energy e

+
e
� linear colliders (reaching �

500 GeV) can measure directly the top Yukawa coupling and the Higgs self-coupling. As already
mentioned in Section 7, however, the ttH coupling will be more precisely measured already at
the HL-LHC, and the Higgs self-coupling can be better measured at the 100TeV FCC-hh than at
any of the proposed linear colliders, thanks to the much greater statistics. Other measurements,

9For comparison, the LEP2 energy consumption ranged between 0.9 and 1.1 TWh/year.
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Cost of Operation

FCC-ee, 1906.02693

https://arxiv.org/pdf/1906.02693.pdf
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Duration of Operation

Higgs factories can be compared on an equal footing, having then the same sensitivity
to new physics coupled to the Higgs boson.

The present note is organised as follows. The default operational scenarios currently
considered for FCC-ee, CLIC and ILC@CERN are recalled in Section 3. In Section 4,
the operation time and the electricity consumption of the first two Higgs factory energy
stages (

p
s = 240 and 350–365GeV for FCC-ee, 380 and 1500GeV for CLIC, 250 and

350–500GeV for ILC@CERN), required to reach the same Higgs coupling precision as
FCC-ee, are evaluated. An estimate of the corresponding cost and carbon footprint,
including the construction and the operation of the facilities, is given in Section 5.
The results are discussed in Section 6, with in particular a comparison to the findings
of earlier analyses [12–14]. (The comparison metric proposed in Ref. [13] is reviewed
in Appendix A.) Finally, concluding remarks are given in Section 7.

3 Default operational scenarios

The currently assumed centre-of-mass energies, integrated luminosities, colliding beam
longitudinal polarisations, and run durations for FCC-ee, CLIC, ILC@CERN are dis-
played in Table 1. Because, in this note, the Higgs coupling precisions are used to
define the comparison metric between the three facilities, only the Higgs factory energy
stages are considered. For FCC-ee, about a day of data taking at the Z pole (a few
109 Z’s) is needed as well for the Z parameter precisions not to limit the Higgs cou-
pling precision. Four years of running at the Z pole and two years of running at the
WW production threshold are also planned, with unique additional physics results.
Including these runs in the comparison (with a metric adapted to their scientific out-
come) is beyond the scope of this note, but would be terribly unfair to CLIC and
ILC. Notwithstanding, the corresponding duration, electricity consumption, cost and
carbon footprint are added for illustration in the plots of Sections 4 and 5.

Table 1: Scenarios for future collider options considered in this note for the
measurement of Higgs properties. The changes with respect to Ref. [11] are high-
lighted in bold and explained in the text.

Collider

Longitudinal

Polarisation

(e
�
, e

+
) (%)

p
s (GeV)

Integrated

Luminosity

(ab
�1

)

Time

(Years)
Ref.

FCC-ee 0, 0

240

350

365

10.8

0.42

2.70

3

1

4

[15]

CLIC ±80, 0
380

1500

1.5

2.5

8

7
[6]

ILC
±80,±30

±80,±20

250

350

500

1000

2

0.1

4

8

15

1.5

11.5

13

[8]

3

baseline plans

Table 4: Time needed for CLIC380 and for ILC250@CERN
to deliver the integrated luminosity needed to reach the same
precision as FCC-ee240 in three years, for selected couplings to
fermions and gauge bosons. The last row indicates the total elec-
tricity consumption for the average 30 years of operation. (The
CLIC duration for the c coupling seems o↵, probably because of
rounding errors after/before the fit in Ref. [11], and is ignored in
the average to be fair to CLIC.)

Duration (years) FCC-ee240 CLIC380 ILC250

b 3 24 30

c 3 77 31

⌧ 3 36 31

Z 3 29 28

W 3 29 28

Average duration (years) 3 30

Electricity consumption (TWh) 4 18 20

FCC-ee CLIC ILC@CERN
0
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Ye
ar
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250 GeV380 GeV

240 GeV

Stage 1 (Default)

Stage 1 (Rescaled)

Operation Time

FCC-ee CLIC ILC@CERN
0

5
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15

20

25

TW
h

250 GeV

380 GeV

240 GeV

Stage 1 (Default)

Stage 1 (Rescaled)

Electricity Consumption

Fig. 1: (Left panel) Operation time in years and (right panel) electrical energy consumption
in TWh, for the first stages of three Higgs factory options at CERN (FCC-ee with

p
s =

240GeV, CLIC with
p
s = 380GeV, and ILC@CERN with

p
s = 250GeV), in the default

scenario (black) and rescaled to reach the same Higgs coupling precision as FCC-ee (o↵-
white).

4.2 Energy upgrades

All facilities do include higher energy upgrades, which benefit the Higgs coupling
precisions. It is assumed in the rest of this note that these upgrades are a↵ordable and
approved. The baseline operation model of FCC-ee includes a run at the tt̄ threshold
and slightly above, up to

p
s = 365GeV. Energy upgrades at 350–500GeV for ILC

and at 1.5TeV for CLIC are also considered. The precision reach of the three colliders
after these second stages with the default integrated luminosities of Table 1, as inferred
from Ref. [11], is displayed in Table 5 for the same couplings as in Table 2. These

6

than half a century once the regular shutdown periods for maintenance and upgrades
are included. (Similarly, FCC-ee would need about four years to reach the precision
of the default 28-years ILC run at 250 and 500GeV.) The linear collider electricity
consumption (and the corresponding carbon footprint) during this half a century of
operation would then be three to four times larger than at FCC-ee, for the same physics
outcome. Even after these second stages a priori favourable to linear colliders, FCC-
ee operations therefore remain – by large factors – the most sustainable operations of
all. The contribution of the facility construction is addressed in the next section.

Table 7: Time needed for CLIC380+1500 and for ILC250+500@CERN to
deliver the integrated luminosity needed to reach the same precision as FCC-
ee240+365 in eight years, for selected couplings. The last row indicates the total
energy consumption for the average 46 years of operation. (The CLIC dura-
tion for the coupling to the b seems o↵, probably because of rounding errors
after/before the fit in Ref. [11], but is conservatively included in the average to
be fair to CLIC.)

Duration (years) FCC-ee240+365 CLIC380+1500 ILC250+500

b 8 26 43

c 8 50 41

⌧ 8 54 47

Z 8 54 49

W 8 56 49

Average duration (years) 8 48 46

Electricity consumption (TWh) 13 55 41
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s
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h

Higgs Factory Stage 1
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250 GeV380 GeV240 GeV
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Fig. 2: (Left panel) Operation time in years and (right panel) electrical energy consumption
in TWh, for the two stages of three possible Higgs factory options at CERN (ILC@CERN
with

p
s = 250 and 500GeV, CLIC with

p
s = 380 and 1500GeV, and FCC-ee with

p
s = 240

and 365GeV) to reach the same Higgs coupling precision as FCC-ee. For illustration, the
operation time and the electricity consumption of the runs at the Z pole and WW threshold
of FCC-ee, not used for the comparison made in this note, are indicated with a dashed line.

8

but different physics output

normalised to same physics/Higgs output

first energy stage (240GeV FCC)

upgraded energy stage (365GeV FCC)
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FCC-ee/FCC-hh Interplay
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FCC-hh without ee could bound BRinv but it could say nothing about BRuntagged (FCC-ee 
needed for absolute normalisation of Higgs couplings) 

M. Cepeda (CIEMAT)  Open Symposium on the Update of European Strategy for Particle Physics  

Kappa-3: +HL-LHC  

�17

modified version (x-scale) of the plot in the report for illustration purposes 

FCC-hh is determining top Yukawa through ratio tth/ttZ
So the extraction of top Yukawa heavily relies on the knowledge of ttZ from FCC-ee

Measuring the Top Yukawa Coupling at 100 TeV 4

tt̄Z cross sections, performed in fiducial regions of acceptance that make them suitable for a realistic
experimental analysis. As we shall discuss here, the theoretical understanding of these processes,
including NLO QCD [31, 32, 33] and EW [34, 35] corrections, and including the current knowledge of
PDFs, allows already today to support an intrinsic overall theoretical accuracy at the percent level.
This precision will certainly be consolidated, and further improved, by future developments. Today,
this allows to start probing the experimental prospects of the 100 TeV collider, to put in perspective the
role of precision Higgs measurements at a such a facility, and to provide useful performance benchmarks
for the design of the future detectors. In this Section we shall motivate such accuracy claim. What will
be learned, can also contribute to improve the expectations for future runs of the LHC, by improving
the predictions for the relative size of the tt̄H signal and its irreducible tt̄Z background.

2.1. Total rates and ratios

The main observation motivating the interest in the study of the tt̄H/tt̄Z ratio is the close analogy
between the two processes. At leading order (LO) they are both dominated by the gg initial state, with
the H or Z bosons emitted o↵ the top quark. The qq̄-initiated processes, which at the 100 (13) TeV
amount for <⇠ 10% (<⇠ 30%) of the total rates, only di↵er in the possibility to radiate the Z boson from
the light-quark initial state. The di↵erence induced by this e↵ect, as we shall see, is not large, and is
greatly reduced at 100 TeV. At NLO, renormalization, factorization and cancellation of collinear and
soft singularities will be highly correlated between the two processes, since the relevant diagrams have
the same structure, due to the identity of the tree-level diagrams. This justifies correlating, in the
estimate of the renormalization and factorization scale uncertainties, the scale choices made for tt̄H

and tt̄Z. The uncertainties due to the mass of the top quark are also obviously fully correlated between
numerator and denominator. Furthermore, due to the closeness in mass of the Higgs and Z bosons
and the ensuing similar size of the values of x probed by the two processes, and given that the choice
of PDFs to be used in numerator and denominator in the scan over PDF sets must be synchronized,
we expect a significant reduction in the PDF systematics for the ratio. Finally, the similar production
kinematics (although not identical, as we shall show in the next Section), should guarantee a further
reduction in the modeling of the final-state structure, like shower-induced higher-order corrections,
underlying-event e↵ects, hadronization, etc.

The above qualitative arguments are fully supported by the actual calculations. All results are
obtained using the MadGraph5 aMC@NLO code [36], which includes both NLO QCD and EW
corrections. The default parameter set used in this study is:

Parameter value Parameter value
Gµ 1.1987498350461625 · 10�5

nlf 5
mt 173.3 yt 173.3
mW 80.419 mZ 91.188
mH 125.0 ↵

�1 128.930

MSTW2008 NLO [37] is the default PDF set and µR = µF = µ0 =
P

f2final states
mT,f/2 is the default

for the central choice of renormalization and factorization scales, where mT,f is the transverse mass
of the final particle f . This scale choice interpolates between the dynamical scales that were shown in
Ref. [31] to minimize the pT dependence of the NLO/LO ratios for the top and Higgs spectra.

�(tt̄H)[pb] �(tt̄Z)[pb]
�(tt̄H)
�(tt̄Z)

13 TeV 0.475+5.79%+3.33%

�9.04%�3.08%
0.785+9.81%+3.27%

�11.2%�3.12%
0.606+2.45%+0.525%

�3.66%�0.319%

100 TeV 33.9+7.06%+2.17%

�8.29%�2.18%
57.9+8.93%+2.24%

�9.46%�2.43%
0.585+1.29%+0.314%

�2.02%�0.147%

Table 1: Total cross sections �(tt̄H) and �(tt̄Z) and the ratios �(tt̄H)/�(tt̄Z) with
NLO QCD corrections at 13 TeV and 100 TeV. Results are presented together with the
renormalization/factorization scale and PDF+↵S uncertainties.

1

2

Subsequently, the 1% sensitivity on tth is essential 
to determine h3 at O(5%) at FCC-hh3

Mangano+ ‘15

Plots from mid-term report

Synergy ee⬌hh.

68% and 95% prob. regions
No FCCee

HL+FCCee-eh-hh

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

δgHtt/gHtt
SM

δg
Zt
tL
/g
Zt
tL

SM

(uncertainty drops in ratio)

https://arxiv.org/abs/1507.08169
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Higgs and EW measurements



CG - Jan. 14, 2025/ 3550 Jorge de Blas 
INFN - University of Padova

Open Symposium - Update of the European Strategy for Particle Physics 
Granada, May 14, 2019
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• Inputs included in the fits (from ESU documents and Refs. therein):


Higgs aTGC EWPO Top EW

FCC-ee Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom.) Yes Yes (365 GeV, Ztt)

ILC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (HE limit) LEP/SLD (Z-pole) + 

HL-LHC + W (ILC) Yes (500 GeV, Ztt)

CEPC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom) Yes No

CLIC Yes (μ, σΖΗ) Yes (Full EFT 
parameterization)

LEP/SLD (Z-pole) + 
HL-LHC + W (CLIC) Yes 

HE-LHC Extrapolated from 
HL-LHC N/A → LEP2 LEP/SLD 


+ HL-LHC (MW, sin2θw) -

FCC-hh
Yes (μ, BRi/BRj) 


Used in combination 
with FCCee/eh

From FCC-ee From FCC-ee -

LHeC Yes (μ) N/A → LEP2 LEP/SLD 

+ HL-LHC (MW, sin2θw) -

FCC-eh
Yes (μ) 


Used in combination 
with FCCee/hh

From FCC-ee From FCC-ee 

+ Zuu, Zdd -

Warning

Warning

Warning

A circular ee Higgs factory

starts as a Z/EW factory


(TeraZ)  

A linear ee Higgs factory

operating above Z-pole


can also preform 

EW measurements 


via Z-radiative return

A linear ee Higgs factory

could also operate on the


Z-pole though at lower lumi

(GigaZ)

Experimental Inputs.
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EW Precision 

Measurements 


at FCC-ee 

Table 130 Experimental (statistical and systematic) precision of a selection of measurements
accessible at FCC-ee, compared with the present world-average precision. The FCC-ee
experimental systematic errors (fourth column) are initial estimates from early 2021 [430], and aim
at being improved down to statistical uncertainties (third column) with new ideas and innovative
methods. This set of measurements, together with those of the Higgs boson properties, achieves
indirect sensitivity to new physics up to a scale ⇤ of 70TeV in an E↵ective Field Theory (EFT)
description with dimension-6 operators (Section 8.2), and possibly much higher in specific new
physics (non-decoupling) models.

Observable present FCC-ee FCC-ee Comment and
value ± error Stat. Syst. leading error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan
Beam energy calibration

�Z (keV) 2495200 ± 2300 4 25 From Z line shape scan
Beam energy calibration

sin2
✓
eff
W (⇥106) 231480 ± 160 2 2.4 From Aµµ

FB at Z peak
Beam energy calibration

1/↵QED(m2
Z)(⇥103) 128952 ± 14 3 small From Aµµ

FB o↵ peak
QED&EW errors dominate

RZ
` (⇥103) 20767 ± 25 0.06 0.2-1 Ratio of hadrons to leptons

Acceptance for leptons

↵s(m
2
Z) (⇥104) 1196 ± 30 0.1 0.4-1.6 From RZ

`

�
0
had (⇥103) (nb) 41541 ± 37 0.1 4 Peak hadronic cross-section

Luminosity measurement

N⌫(⇥103) 2996 ± 7 0.005 1 Z peak cross-sections
Luminosity measurement

Rb (⇥106) 216290 ± 660 0.3 < 60 Ratio of bb̄ to hadrons
Stat. extrapol. from SLD

Ab
FB, 0 (⇥104) 992 ± 16 0.02 1-3 b-quark asymmetry at Z pole

From jet charge

Apol,⌧
FB (⇥104) 1498 ± 49 0.15 <2 ⌧ polarization asymmetry

⌧ decay physics

⌧ lifetime (fs) 290.3 ± 0.5 0.001 0.04 Radial alignment

⌧ mass (MeV) 1776.86 ± 0.12 0.004 0.04 Momentum scale

⌧ leptonic (µ⌫µ⌫⌧ ) B.R. (%) 17.38 ± 0.04 0.0001 0.003 e/µ/hadron separation

mW (MeV) 80350 ± 15 0.25 0.3 From WW threshold scan
Beam energy calibration

�W (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan
Beam energy calibration

↵s(m
2
W)(⇥104) 1010 ± 270 3 small From RW

`

N⌫(⇥103) 2920 ± 50 0.8 small Ratio of invis. to leptonic
in radiative Z returns

mtop (MeV) 172740 ± 500 17 small From tt̄ threshold scan
QCD errors dominate

�top (MeV) 1410 ± 190 45 small From tt̄ threshold scan
QCD errors dominate

�top/�
SM
top 1.2 ± 0.3 0.10 small From tt̄ threshold scan

QCD errors dominate

ttZ couplings ± 30% 0.5 – 1.5 % small From
p

s = 365GeV run

529

Table from mid-term report

Experimental (statistical and systematic) precision of a 
selection of measurements accessible at FCC-ee, 

compared with the present world-average precision.  
FCC-ee syst. scaled down from LEP estimates. 
Room for improvement with dedicated studies. 

Note that syst. go down also with stat. 
(e.g. beam energy determination from ee→Z/𝛾 thus

goes down with luminosity).
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Improvements of EW measurements
H Consistency of electroweak precision data

Put some text here....
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Figure 18. Constraints on mW and mtop from direct measurements (horizontal and vertical lines)
and indirect constraints (ellipses). In all cases the constraints from current data plus HL-LHC are
compared to the ones expected for the e+e� collider.

I Improvement with respect to HL-LHC

Figures 19 and 20 give a graphic comparison of the improvement with respect to HL-LHC
in the Kappa-3 and SMEFT-ND frameworks. This improvement is shown as the ratio of the
precision at the HL-LHC over the precision at the future collider, with more darker colors
corresponding to larger improvement factors. The kappa-3 result shows large improvements,
up to an order of magnitude, for all future ee colliders for the measurement of the couplings
to Z, W and b and the limits on the invisible branching ratio, and an ’infinite’ improvement

– 97 –

The importance of improved EW measurements is threefold:

1) improve mass reach in indirect search for NP (S~10-2 → M~70 TeV)


2) reduced parametric uncertainties for other measurements 

3) reduced degeneracies in a global fit for Higgs couplings

Exquisite measurements of mZ (100 keV) , ΓZ (25 keV), mW (<500 keV), αQED(mZ) (3.10-5) (all unique to FCC-ee)
w/. stat.+ param. + th-exp syst.

Table 37. Comparison of the sensitivity at 68% probability to new physics contributions to
EWPO in the form of the oblique S and T parameters, under different assumptions for the SM
theory uncertainties. We express the results in terms of the usually normalised parameters: S =
4 sin2 ✓wŜ/↵ and T = T̂ /↵.

HL-LHC HL-LHC+

CLIC380 CLIC380 ILC250 ILC250 CEPC FCC-ee

(+GigaZ) (+GigaZ)

S Full ThIntr Unc. 0.053 0.032 0.013 0.015 0.012 0.01 0.0079
No ThIntr Unc. 0.053 0.032 0.011 0.012 0.009 0.0068 0.0038

No ThPar+Intr Unc. 0.052 0.031 0.0091 0.011 0.0067 0.0031 0.0013
T Full ThIntr Unc. 0.041 0.023 0.013 0.015 0.014 0.0094 0.0058

No ThIntr Unc. 0.041 0.023 0.012 0.014 0.013 0.0072 0.0022
No ThPar+Intr Unc. 0.039 0.022 0.01 0.011 0.0091 0.0041 0.0019

2-σ region
HL-LHC
HL+CLIC380
HL+ILC250
HL+CEPC
HL+FCCee

HL+CLIC380,Giga Z
HL+ILC250,Giga Z
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Figure 17. (Left) 2-� regions in the S � T plane at the different future colliders, combined with
the HL-LHC (including also the LEP/SLD EWPO programme). We express the results in terms
of the usually normalised parameters: S = 4 sin2 ✓wŜ/↵ and T = T̂ /↵. The results include the
future projected parametric uncertainties in the SM predictions of the different EWPO, but not the
intrinsic ones. (Right) The same illustrating the impact of neglecting such intrinsic theory errors.
For each project (including the Giga-Z option for linear colliders) the solid regions show the results
in the left panel, to be compared with the regions bounded by the dashed lines, which include the
full projected theory uncertainty.

– 96 –

stress-test of SM


ΔmW ~ 0.25 MeV (vs 12 MeV @ LHC)
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Improvements of EW measurements
H Consistency of electroweak precision data
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Figure 18. Constraints on mW and mtop from direct measurements (horizontal and vertical lines)
and indirect constraints (ellipses). In all cases the constraints from current data plus HL-LHC are
compared to the ones expected for the e+e� collider.
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Figures 19 and 20 give a graphic comparison of the improvement with respect to HL-LHC
in the Kappa-3 and SMEFT-ND frameworks. This improvement is shown as the ratio of the
precision at the HL-LHC over the precision at the future collider, with more darker colors
corresponding to larger improvement factors. The kappa-3 result shows large improvements,
up to an order of magnitude, for all future ee colliders for the measurement of the couplings
to Z, W and b and the limits on the invisible branching ratio, and an ’infinite’ improvement
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The importance of improved EW measurements is threefold:

1) improve mass reach in indirect search for NP (S~10-2 → M~70 TeV)


2) reduced parametric uncertainties for other measurements 

3) reduced degeneracies in a global fit for Higgs couplings

Exquisite measurements of mZ (100 keV) , ΓZ (25 keV), mW (<500 keV), αQED(mZ) (3.10-5) (all unique to FCC-ee)

Patrick Janot

2-σ region
(EWPO: stat. unc. only)

HL-LHC
HL + CLIC380
HL + ILC250
HL + FCCee
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0.05
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S
A couple physics plots from FCC France

q Fit to S and T parameters (representing loop corrections to the Z andW propagators)

u From Jorge de Blas, with only statistical and parametric uncertainties

l The true potential of FCC-ee is one order of magnitude better
è Next step: Devise experimental and theoretical methods to match statistics !

21 Nov. 2019
FCC-ee physics coordination meeting

10

w/ stat. and param. only

stress-test of SM


ΔmW ~ 0.25 MeV (vs 12 MeV @ LHC)
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Systematics vs. Statistics.Precision EW measurements
q We often hear that more Z pole statistics is useless, because they are systematics-limited

u This is a passive attitude, which leads to pessimistic expectations and wrong conclusions/planning
l Experience shows that a careful experimental systematic analysis boils down to a statistical problem

l If well prepared, theory will go as far as deemed useful : this preparation starts today (and needs SUPPORT) 

l We are working in the spirit of matching systematic errors to expected statistics for all precision measurements

u Take the Z lineshape

u Most of the work is (will be) on systematics
l But huge statistics will turn into better precision

è A real chance for discovery
20

Z (and W) mass: 
Error dominated by √s determination with resonant depolarization. 
As more understanding is gained, progress are made at a constant 
pace, and this error approaches regularly the statistical limit 

sin2qWeff and GZ (also mW vs mZ) : 
Error dominated by point-to-point energy uncertainties. 
Based on in-situ comparisons between √s (e.g. with muon pairs), 
with measurements made every few minutes (100’s times per day)  
Boils down to 
• statistics (the more data the better, scales down as 1/√L) 
• detector systematics (uncorrelated between experiments, scales 

down a 1/√Nexperiments)

aQED(mZ) : 
Obtained at FCC-ee from off-peak asymmetries (87.9 & 94.3 GeV): for the 
first time, it is a direct measurement of this quantity (game changer)
• Enters as a limiting parametric uncertainties in the new physics 

interpretation many past and future measurements.   
• Is statistics limited and will directly benefit from more luminosity
• No useful impact on aQED(mZ)  with five times less luminosity

FCC-ee
special

Stat. 3×10-5

Stat. 2×10-6 and 4 keV

Stat. 4 keV (250 keV)

PED @ CERN-SPC ‘2022

https://indico.cern.ch/event/1223855/#day-2022-12-13
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• Global fit to electroweak precision measurements at FCC-ee 

Jorge de Blas 
INFN - University of Padova

Physics at FCC: Overview of the Conceptual Design Report 
CERN, March 5, 2019

The Global EW fit at FCC-ee
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Impact of theory uncertainties

Theory uncertainties have a  
significant impact in the sensitivity  

to New Physics  
(not easy to see in this global fit  

due to correlations)

Current
FCC-ee

No Th-unc.

95% Prob. Limits

Current FCCee
Exp. SM Exp. SM (par.) SM (th.)

�MW [MeV] ±15 ±8 ±1 ±0.6/±1 ±1
��Z [MeV] ±2.3 ±0.73 ±0.1 ±0.1 ±0.2
�A` [⇥10�5] ±210 ±93 ±2.1 ±8/±14 ±11.8
�R

0
b
[⇥10�5] ±66 ±3 ±6 ±0.3 ±10

Table 19: UPDATED.

↵s �↵
(5)
had MZ mt Total FCCee

�MW [MeV] ±0.14 ±0.92 ±0.1 ±0.3 ±0.98 ±1
��Z [MeV] ±0.099 ±0.05 ±0.01 ±0.01 ±0.11 ±0.1
�A` [⇥10�5] ±0.54 ±14 ±0.56 ±1.2 ±14 ±2.1
�R

0
b
[⇥10�5] ±0.22 ±0.07 ±0.003 ±0.17 ±0.29 ±6

Table 20: Future param uncertaintities

↵s ↵QED/�↵
(5)
had MZ mt Total FCCee

�MW [MeV] ±0.14 ±0.53/± 0.92 ±0.1 ±0.3 ±0.64/± 0.98 ±1
��Z [MeV] ±0.099 ±0.03/± 0.05 ±0.01 ±0.01 ±0.1 /± 0.11 ±0.1
�A` [⇥10�5] ±0.54 ±8 /± 14 ±0.56 ±1.2 ±8.1 /± 14 ±2.1
�R

0
b
[⇥10�5] ±0.22 ±0.04/± 0.07 ±0.003 ±0.17 ±0.28/± 0.29 ±6

Table 21: Future param uncertaintities

Current FCCee
Exp. SM Exp. SM (par.) SM(par.+th.)

�MW [GeV] ±0.015 ±0.0080 ±0.001 ±0.00098 ±0.
��W [GeV] ±0.042 ±0.00079 ±0.005 ±0.0001 ±0.
��Z [GeV] ±0.0023 ±0.00073 ±0.0001 ±0.00011 ±0.
��

0
h
[nb] ±0.037 ±0.0062 ±0.025 ±0.00099 ±0.

� sin2
✓
lept
e↵ (QFB) ±0.0012 ±0.00012 ±0.0001 ±0.00002 ±0.

�P
pol
⌧

= A` ±0.0033 ±0.00093 ±0.0002 ±0.00014 ±0.
�A` ±0.0021 ±0.00093 ±0.000021 ±0.00014 ±0.
�Ac ±0.027 ±0.00041 ±0.01 ±0.00006 ±0.
�Ab ±0.020 ±0.000076 ±0.007 ±0.00001 ±0.
�A

0,`
FB ±0.0010 ±0.00021 ±0.0001 ±0.00003 ±0.

�A
0,c
FB ±0.0035 ±0.00052 ±0.0003 ±0.00008 ±0.

�A
0,b
FB ±0.0016 ±0.00067 ±0.0001 ±0.0001 ±0.

�R
0
`

±0.025 ±0.0077 ±0.001 ±0.0013 ±0.
�R

0
c

±0.0030 ±0.000026 ±0.0003 ±0.000004 ±0.
�R

0
b

±0.00066 ±0.000030 ±0.00006 ±0.000003 ±0.

Table 22:

16

5

March 4, 2019

EFT analyses with FCC precision

J. de Blasa†

aINFN, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy

Abstract

Materials for the talk presented at the FCC-ee physics workshop.

1 Intro

Ĉ
(1)
�l

= C
(1)
�l

+ 1
4
C�D (1)

Ĉ
(3)
�l

= C
(3)
�l

+ c
2
w

4s2w
C�D + cw

sw
C�WB (2)

Ĉ
(1)
�q

= C
(1)
�q

�
1
12
C�D (3)

Ĉ
(3)
�q

= C
(3)
�q

+ c
2
w

4s2w
C�D + cw

sw
C�WB (4)

Ĉ�e= C�e +
1
2
C�D (5)

Ĉ�u= C�u �
1
3
C�D (6)

Ĉ�d= C�d + 1
6
C�D (7)

Ĉll= Cll (8)

L = LSM + LZ0 + LSM�Z0 (9)

LE↵ (10)

2 Couplings in EFT

�ghhh/g
SM
hhh

⇡ 40% (11)

�ghhh/g
SM
hhh

⇡ 25% (12)

†E-mail: Jorge.DeBlasMateo@roma1.infn.it

1

Flavour universal fit 
(Sensitive to 8 comb. of operators) 

^ ^ ^ ^ ^ ^ ^ ^

Impact of TH uncertainties.
J. de Blas, FCC CDR overview ‘19

https://indico.cern.ch/event/789349/contributions/3298726/attachments/1806157/2947778/Global_EFT_fits_FCC.pdf
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Some EW measurements @ Tera 

8

relative ĮQED uncertainty with 80 ab-1

Why 4 years and ~150 ab-1 at & around the Z pole ?

Excellent experimental control of off-peak di-muon 
asymmetry motivates campaign to collect 50-80 ab-1

off peak to gain highest sensitivity to Z-Ȗ interference  

Allows for clean determination of ĮQED(mZ
2), which 

is a critical input for mW closure tests (see later).

Goal: measure 1/ĮQED(mZ
2) to +/- 0.003.

This dependence, & location of 
half-integer spin tunes, guides the choice 

of off-peak energies: 87.8 & 93.9 GeV. 
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Christophe Grojean Physics Highlights of future ee colliders CERN, Nov. 19, 2o15/366

Accessing SM input parameters
   QED(mZ)!    QCD(mZ)!

Patrick Janot 

The*FCC4ee*potential*for*αQED(mZ)**
!  Is*the*large*luminosity*of*FCC4ee*sufficient*to*improve*?**

*

◆  Could*use*the*FCC4ee*to*measure*σ(e+e-→*µ+µ-)*and*AFB
µµ at*(a)*judicious*√s*

●  The*γ*exchange*term*is*proportional*to*α2
QED(√s)****

●  The*Z*exchange*term*is*proportional*to*G2
F,*hence*independent*of*αQED**

●  The*γZ*interference*is*proportional*to*αQED(√s)*×*GF*

➨  The*run*at*the*Z*pole*is*of*course*not*well*suited*to*the*αQED(mZ)*measurement*

*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*

29 June 2015 
FCC-ee physics meeting 
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γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 
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*
◆  If*the*chosen*√s*is*close*to*mZ*(say,*between*50*and*150*GeV)*

●  The*extrapolation*to*mZ*is*not*affected*by*e+e-*resonances*at*small*energies*

➨  The*theoretical*uncertainty*from*the*limited*running*becomes*negligible*
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γ, Ζ See for example: 
•  Leike, Riemann, hep-ph/9508390 
•  L. Berthier, M. Trott, arXiV:1502.0257 

Patrick Janot 
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Combination

!  Combination*of*cross*section*(µµ)*and*AFB*(µµ*and*ττ),*in*a*year*(CW,*4IPs)*

◆  Get*to*2×1045at*√s*≤*70*GeV*(cross*section)*and*88*/*95*GeV*(forward4backward*asym.)*
●  Also*with*cross*section*at*125*GeV*(5×1045),*160*GeV*(8×1045)*or*240*GeV*(1.2×1044)*

Summary*(1)*
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Outline
• Presentation based on :  The W mass and width measurement

challenge at FCC-ee in A future Higgs and Electroweak factory (FCC): 
Eur. Phys. J. Plus 136, 1203 (2021), arXiv:2107.04444 

• Two independent W mass and width measurements @FCCee :

1. The mW and ΓW determinations from the WW threshold cross section
lineshape, with 12/ab at ECM ≃ 157.5-162.5 GeV 

2. Other measurements of mW and ΓW from the decay products
kinematics at ECM ≃ 162.5-240-365 GeV 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 3

WW threshold : W mass and width 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 14

Scans of possible E1 E2 data taking energies  and luminosity fractions f (at the E2 point)

ΔmW , ΔΓW:  error on W mass and width from fitting both
ΔmW : error on W mass from fitting only mW

ΔΓW

ΔmW
ΔmW 0.28

0.43

ΔmW =0.45 MeV , ΔΓW=1 MeV (r=-0.6)
ΔmW=0.35 MeV

A -minimum of ΔΓW=0.91 MeV with ΔmW=0.55 MeV
taking data at E1=156.6 GeV E2=162.4 GeV f=0.25

yields ΔmW=0.47 MeV (as single par)

B- minimum of ΔmW=0.28  MeV ΔΓW=3.3 MeV with 
E1=155.5 GeV E2=162.4 GeV f=0.95

yields ΔmW=0.28 MeV (as single par)

C- minimum of ΔΓW=0.96 MeV +ΔmW=0.41 MeV with 
E1=157.5 GeV E2=162.4 GeV f=0.45

yields and   ΔmW=0.37 MeV (as single par)

ways ahead : WW threshold

• Explore in more detail the systematic uncertainties (cancellation) effects with  
multi-point (n≥3) cross section measurements. Evaluate benefits of additional 
model independence.
• reduction / cancellation of acceptance & luminosity systs is of particular interest

• Design a realistic a modern analysis with event classifiers, evaluate performances 
and the corresponding impact of systematic uncertainties. Feedback to theory 
and detector design.

• Explore BSM/EFT interest and utility of multi-point precision "WW measurements 
at threshold, also with other 4f productions (Weq, Zee, ..) 

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 26

pmW=0.4 MeV prW=1 MeV

ways ahead : W kinematic reconstruction

• Studies with a LEP-style mW measurement :  verify stat potential with 
different ECM data and study the impact of systematic uncertainties in 
detail : report back to theory and detector design
• Ultimate simultaneous analysis and fit of diboson events (WW, ZZ and Zs) 

to extract mW/mZ with potential cancellations of systematic uncertainties 
both theoretical and experimental 
• Explore alternative kinematic reconstruction methods that do not make 

use of ECM as the ones proposed by ILC. Most demanding on experimental 
systs (energy & momentum calibration of jets and leptons) . Detector 
requirements ?

FCC workshop - 27 Jan 2023 P.Azzurri - W mass and width 27

pmW , prW= 2-5 MeV ?

Images 
by brgfx 
in Freepik 

?
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new

– 17 –

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

Sensitivity on EW couplings.
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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• At circular colliders:
Z-pole run improves Zee couplings by almost factor 10

Z pole run
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new

– 17 –

δgZ,L
ee δgZ,R

ee δgW
eν δgZ,L

μμ δgZ,R
μμ δgW

μν δgZ,L
ττ δgZ,R

ττ δgW
τν δgZ,L

uu δgZ,R
uu δgZ,L

dd δgZ,R
dd δgZ,L

bb δgZ,R
bb10-6

10-5

10-4

10-3

10-2

10-1

1

10-6

10-5

10-4

10-3

10-2

10-1

1
precision reach on EW couplings from full EFT global fit

HL-LHC S2 + LEP/SLD
CEPC Z/WW/240GeV
FCC-ee Z/WW/240GeV
FCC-ee Z/WW/240GeV/365GeV

ILC 250GeV
ILC 250GeV/350GeV
ILC 250GeV/350GeV/500GeV

CLIC 380GeV
CLIC 380GeV/1.5TeV
CLIC 380GeV/1.5TeV/3TeV

P(e-,e+)=(∓0.8,±0.3) P(e-,e+)=(∓0.8, 0)

light shade: CEPC/FCC-ee without Z-pole
CEPC/FCC-ee without WW threshold
Higgs measurements excluded

lepton colliders are combined with HL-LHC & LEP/SLD
imposed U(2) in 1&2 gen quarks

Z@250GeV S1
Z@250GeV S2

Z@380GeV S1
Z@380GeV S2

Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
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absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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Figure 12: Changes in correlations between couplings depending on the precision of EW
measurements assumed. The top row is for CEPC and the bottom two rows are for FCC-ee.
HL-LHC projections are included for all scenarios.

and FCC-ee .
The change in the correlations from one EW scenario to another for both CEPC and

FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively

– 14 –

https://arxiv.org/abs/1907.04311


CG - Jan. 14, 2025/ 3559

Impact of Z-pole on Higgs.

• FCC-ee and CEPC benefit a lot (>50% on HVV) from Z-pole run

• FCC-ee and CEPC EW measurements are almost perfect for what concerns Higgs physics (<10%).          

Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements
J. De Blas et al. 1907.04311

δgHZZ δgHWW δgH
γγ

δgH
Zγ δgH

gg δgHtt δgHcc δgHbb δgHττ δgH
μμ δg1,Z δκγ λZ

10-4

10-3

10-2

10-1

1

10-5

10-4

10-3

10-2

10-1

H
ig
gs
co
up
lin
gs

aTG
C
s

precision reach on effective couplings from full EFT global fit
HL-LHC S2 + LEP/SLD
CEPC Z/WW/240GeV
FCC-ee Z/WW/240GeV
FCC-ee Z/WW/240GeV/365GeV

ILC 250GeV
ILC 250GeV/350GeV
ILC 250GeV/350GeV/500GeV

CLIC 380GeV
CLIC 380GeV/1.5TeV
CLIC 380GeV/1.5TeV/3TeV

P(e-,e+)=(∓0.8,±0.3) P(e-,e+)=(∓0.8, 0)

light shade: CEPC/FCC-ee without Z-pole
CEPC/FCC-ee without WW threshold
perfect EW perfect EW&TGC

lepton colliders are combined with HL-LHC & LEP/SLD
imposed U(2) in 1&2 gen quarks

Z@250GeV Z@380GeV

10

2

20
10

2

20

Ratios, real EW / perfect EW

δgH
ZZ δgH

WW δgH
γγ

δgH
Zγ δgH

gg δgH
tt δgH

cc δgH
bb δgH

ττ δgH
μμ δg1,Z δκγ λZ

1

1.5

1

1.5

10

2

20
10

2

20Ratios, real EW / perfect EW

δgH
ZZ δgH

WW δgH
Zγ δg1,Z δκγ

1

1.5

1

1.5

Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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• LEP EW measurements are a limiting factor (~30%) to Higgs precision at ILC, especially for the first runs
            But EW measurements at high energy (via Z-radiative return) help mitigating this issue
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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• Higher energy runs reduce the EW contamination in Higgs coupling extraction
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Kappa-2: allowing BSM and Invisible
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Kappa-2: allowing BSM and Invisible
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HL-LHC has no 
access to charm Yukawa

FCC-ee alone has no 
access to top Yukawa

FCC-ee is limited 
by statistics on rare decays
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Complementarity FCC-ee⬌HL-LHC. 
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Kappa-3: +HL-LHC  
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modified version (x-scale) of the plot in the report for illustration purposes 

Important synergy HL-LHC — low energy lepton 
colliders


1. Top/Charm Yukawa

2. Statistically limited channels: γγ, µµ
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Thanks to HL-LHC, 
top Yukawa doesn’t 

require tth threshold

FCC-ee can reconstruct charm 
and gain access to charm Yukawa
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parison with the prospects obtained without Higgs measurements, shown with trapezoidal
marks. Sizeable e�ects are only seen, at linear colliders, on the Z-boson couplings to
electrons. Those would also be the most a�ected by an improvement of the left-right
polarization asymmetry ALR mentioned earlier. At the HL-LHC, the impact of Higgs mea-
surements on EW couplings is only visible for the gauge couplings of the light quarks, of
down type in particular (d and s), which are poorly constrained at LEP and SLD. The
V h and diboson production processes, mostly initiated by light quarks at the LHC, are
sensitive to these couplings [55].

In addition to the precision reach of each coupling, the correlations among them also
contain important information, and are particularly relevant for understanding the inter-
play of Higgs and EW measurements. To avoid showing a large set of 28 ◊ 28 matrices,
we present a scheme-ball illustration in figure 5, which highlights large correlations with
lines connecting pairs of couplings in its inner circle. The circular collider projections in-
clude both Z-pole and WW threshold measurements. At linear colliders, the EW and the
Higgs sector appear clearly connected due to the absence of new Z-pole measurements.
Strong correlations are present between aTGCs and other electroweak couplings. This
clearly shows again that the electroweak, triple-gauge, and Higgs sectors of the e�ective
field theory would become significantly entangled with the advent of future lepton colliders.

We further investigate the impacts of diboson measurements and beam polarizations
in the rest of this section.

3.1 Impact of W W measurements
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precision reach with different assumptions on e+e-→WW measurements
HL-LHC S2 + LEP/SLD
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FCC-ee Z/WW/240GeV
FCC-ee Z/WW/240GeV/365GeV

ILC 250GeV
ILC 250GeV/350GeV
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CLIC 380GeV/1.5TeV
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light shade: ϵ=0.01 (χWW
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2 )
solid shade: ϵ=0.5 (default)

: ϵ=1
lepton colliders are combined with HL-LHC & LEP/SLD
imposed U(2) in 1&2 gen quarks

Figure 6: Impact of diboson measurement precision on Higgs and triple-gauge couplings.
Our default assumption, adopted in figure 2, is also shown here as dark-shaded bars. It
corresponds to an overall e�ciency ‘ of 50% (see section 2.3). The results obtained with
an ideal 100% and a lower 1% e�ciency are shown as vertical lines and light shaded bars
respectively. The run scenarios of the future lepton colliders are summarized in figure 1.

As explained in section 2.3, our prospects for WW measurements neglect backgrounds,
detector e�ects and systematic uncertainties but assume a conservative overall e�ciency
‘ of 50%. We examine in figure 6 the impact of di�erent assumptions for ‘ on Higgs and
triple-gauge coupling prospects. This exercise also more generally allows us to visualize
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ϵ: signal selection efficiency
: individual fit

Figure 13: A comparison of the reach on aTGCs from the binned method used in ref. [58]
and the optimal observables for the diboson measurement at CEPC 240 GeV. To match
ref. [58], we use both the total rate and the normalized distributions of the semileptonic
channel, and impose the TGC dominance assumption. A 80% signal selection e�ciency is
assumed in ref. [58].

As an illustration of the power of the optimal observables, we show in figure 13 a
comparison with the conventional binned distribution method used in ref. [58] for CEPC
240 GeV. To match the inputs and assumptions of ref. [58], we use both the total rate and
the normalized distributions of the semileptonic channel of e+e≠

æ WW , make the TGC
dominance assumption and perform a global fit among the three aTGCs. If a 80% signal
selection e�ciency is assumed as in ref. [58], we observe a factor of 4-5 improvement in
”g1,Z and ⁄Z with the use of optimal observables, and a some what smaller improvement
(by a factor of ≥ 2) for ”Ÿ“ . In particular, a better discrimination between ”g1,Z and ⁄Z

is achieved using optimal observables, which reduced the strong correlation between them
from ≠0.9 (of the binned distribution method) to ≠0.6. The improvement is still outstand-
ing even with the conservative 50% e�ciency used in our analysis. Note however that they
remain degeneracies between Higgs and EW parameters that cannot be resolved with WW

measurements alone, even with optimal use of the available di�erential information.

Treatment of Higgsstrahlung production The three relevant angles in the process
e+e≠

æ hZ, Z æ ¸+¸≠ are the production polar angle and the Z decay polar and azimuthal
angles. In refs. [71, 72], the information contained in angular distributions was extracted
using asymmetries. While this approach captures all the essential information, the corre-
lations among the asymmetry observables are omitted, which results in a reduction in the
sensitivity. We instead construct statistically optimal observables from these three angles
using equation (D.6) and (D.7), keeping only the linear CP-even EFT dependences. We
use only the h æ bb̄ and Z æ e+e≠/µ+µ≠ channel, which is almost background free after
the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the

– 35 –
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Higgs self-coupling.
Higgs self-couplings is very interesting for a multitude of reasons 


(vacuum stability, hierarchy, baryogenesis, GW, EFT probe…). 


How much can it deviate from SM given the tight constraints on other Higgs couplings?

Do you need to reach HH production threshold to constrain h3 coupling?• Comparison of capabilities to measure the H3 coupling 

Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

The Higgs self-coupling
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How to measure deviations of λ
3

di-Higgs single-H

exclusive

global

1. di-H, excl.
• Use of σ+HH,             

 • only deformation of κλ

3. single-H, excl.
• single Higgs processes at higher order
• only deformation of κλ                          

2. di-H, glob.
• Use of σ+HH,                                                  
• deformation of κλ + of the single-H couplings
+a, do not consider the effects at higher order 

of κλ to single H production and decays
+b,  these higher order effects are included    

4. single-H, glob.
• single Higgs processes at higher order
• deformation of κλ + of the single Higgs 

couplings

 The Higgs self-coupling can be assessed using di-Higgs production and 
single-Higgs production

 The sensitivity of the various future colliders can be obtained using four 
different methods:

*

λ
g�

g
*

gmin

1

0
4π

λ = √gmin g*
─

λ = gmin

FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

10

Hadron collider Lepton collider

e� �e

�̄ee+

h
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h

h
h

h

h

h

W

W

W

W

W

W

W

h

Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional

31/58

Directly: Higgs-pair prod

CHAPTER 10
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of

120
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Single-Higgs couplings (1)

 Higgs self-interaction via one-loop corrections of the single-Higgs production
– κ

λ
-dependent corrections to the tree-level cross-sections

 pp colliders:

ZH

ννH

VBF

ttH

VH

 ee colliders:

 ex. for κ
λ 
= 2:

– σ(pp→ttH) modified by 3%
– σ(ee → ZH) modified by 1%
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Particular exceptions: Higgs DM-portal models or custodial EW quadruplet

DiVita et al,: 1704.01953 Falkowski, Rattazzi: 1902.05936 Durieux, McCullough, Salvioni: 2209.00666

Other exceptions: non-decoupled/fine-tuned spectra

Custodial weak quadruplet: prospects

By measuring the Higgs self-coupling, 

HL-LHC, FCC-ee, FCC-hh will probe wide region of open parameter space
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FIG. 1. Parameter scan of the type-I 2HDM in the (mH � mH± , mA � mH±) parameter plane. Left: the colour indicates

the mean value of 
(2)
�

in each hexagon-shaped patch; right: the colour indicates the mean value of the ratio 
(2)
�

/
(1)
�

. In the
colour bar of the left-hand plot, the red line indicates the current experimental upper limit on �.

regarded as excluded if only one-loop contributions were
incorporated in the theoretical prediction. Furthermore,

the purple-highlighted part of the 
(2)

�
curve indicates the

parameter region that will be probed in the future at the
HL-LHC, based on the projection for the upper limit on
� discussed above.

One can see thatconfronting the existing experimental
limit on the trilinear Higgs coupling with state-of-the-art
theoretical predictions incorporating contributions up to
the two-loop order excludes important parts of the pa-
rameter regions of extensions of the SM that would other-
wise be allowed by all relevant experimental and theoreti-
cal constraints. In the displayed example (with M = mH

kept fixed5 at 600 GeV) the � constraint gives rise to
an upper limit on mA of mA . 900 GeV, while the con-
straint from NLO perturbative unitarity would allow mA

values of up to 1020 GeV. The impact of the � constraint
would be much smaller if only the one-loop contributions
were included in the theoretical prediction (indicated by

the part of the 
(1)

�
curve that is highlighted in orange).

The sensitivity of the HL-LHC in this example will allow
one to probe mA values down to about 800 GeV via an
upper limit on � or a measurement of a non-SM value.
While future data from the LHC will clearly further en-
hance the impact of the � constraint for probing possible
scenarios of electroweak symmetry breaking, it should be
mentioned that the impact of the theoretical constraint
from perturbative unitarity (indicated by the grey area

5
Di↵erent choices of M = mH lead to qualitatively similar results

for the same amount of splitting between the masses.
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FIG. 2. � as a function of mA at one-loop (dashed blue

curve) and at two-loop order (solid black curve). The grey
region is excluded by the constraint of NLO perturbative uni-
tarity. The dotted red and purple horizontal lines indicate
the current upper limit on � and the HL-LHC projection,
respectively. The parts of the two- and one-loop curves for
� that yield a prediction above the current limit of 6.3 are
highlighted in red and orange, respectively. The part of the
two-loop curve highlighted in purple yields a prediction above
the HL-LHC projection for �.

h3 generically is not a tool to discover BSM
but exceptions exist.

As previous slides quantify, single-Higgs coupling measurements will reach the 

precision stage far before tests of  

This makes                  an important quantity for a new physics model: 

if it is large, self-coupling measurements probe genuinely new ground 

However, in canonical models addressing hierarchy problem (composite Higgs, SUSY) 

and prospects to observe deviations in  are limited

h3

h3

Example: Minimal Composite Higgs 5+5, 
  Composite Twin Higgs 8+1

This talk: naturalness and δh3/δhVV
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Generically: (composite Higgs/susy)

Large self-coupling scenarios.

https://arxiv.org/abs/1704.01953
http://arxiv.org/abs/arXiv:2209.00666
http://arxiv.org/abs/arXiv:1902.05936
http://arxiv.org/abs/arXiv:2202.03453
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Particular exceptions: Higgs DM-portal models or custodial EW quadruplet

DiVita et al,: 1704.01953 Falkowski, Rattazzi: 1902.05936 Durieux, McCullough, Salvioni: 2209.00666

Other exceptions: non-decoupled/fine-tuned spectra

Custodial weak quadruplet: prospects

By measuring the Higgs self-coupling, 

HL-LHC, FCC-ee, FCC-hh will probe wide region of open parameter space
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FIG. 1. Parameter scan of the type-I 2HDM in the (mH � mH± , mA � mH±) parameter plane. Left: the colour indicates

the mean value of 
(2)
�

in each hexagon-shaped patch; right: the colour indicates the mean value of the ratio 
(2)
�

/
(1)
�

. In the
colour bar of the left-hand plot, the red line indicates the current experimental upper limit on �.

regarded as excluded if only one-loop contributions were
incorporated in the theoretical prediction. Furthermore,

the purple-highlighted part of the 
(2)

�
curve indicates the

parameter region that will be probed in the future at the
HL-LHC, based on the projection for the upper limit on
� discussed above.

One can see thatconfronting the existing experimental
limit on the trilinear Higgs coupling with state-of-the-art
theoretical predictions incorporating contributions up to
the two-loop order excludes important parts of the pa-
rameter regions of extensions of the SM that would other-
wise be allowed by all relevant experimental and theoreti-
cal constraints. In the displayed example (with M = mH

kept fixed5 at 600 GeV) the � constraint gives rise to
an upper limit on mA of mA . 900 GeV, while the con-
straint from NLO perturbative unitarity would allow mA

values of up to 1020 GeV. The impact of the � constraint
would be much smaller if only the one-loop contributions
were included in the theoretical prediction (indicated by

the part of the 
(1)

�
curve that is highlighted in orange).

The sensitivity of the HL-LHC in this example will allow
one to probe mA values down to about 800 GeV via an
upper limit on � or a measurement of a non-SM value.
While future data from the LHC will clearly further en-
hance the impact of the � constraint for probing possible
scenarios of electroweak symmetry breaking, it should be
mentioned that the impact of the theoretical constraint
from perturbative unitarity (indicated by the grey area

5
Di↵erent choices of M = mH lead to qualitatively similar results

for the same amount of splitting between the masses.
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FIG. 2. � as a function of mA at one-loop (dashed blue

curve) and at two-loop order (solid black curve). The grey
region is excluded by the constraint of NLO perturbative uni-
tarity. The dotted red and purple horizontal lines indicate
the current upper limit on � and the HL-LHC projection,
respectively. The parts of the two- and one-loop curves for
� that yield a prediction above the current limit of 6.3 are
highlighted in red and orange, respectively. The part of the
two-loop curve highlighted in purple yields a prediction above
the HL-LHC projection for �.

h3 generically is not a tool to discover BSM
but exceptions exist.

As previous slides quantify, single-Higgs coupling measurements will reach the 

precision stage far before tests of  

This makes                  an important quantity for a new physics model: 

if it is large, self-coupling measurements probe genuinely new ground 

However, in canonical models addressing hierarchy problem (composite Higgs, SUSY) 

and prospects to observe deviations in  are limited

h3

h3

Example: Minimal Composite Higgs 5+5, 
  Composite Twin Higgs 8+1

This talk: naturalness and δh3/δhVV
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Generically: (composite Higgs/susy)If the questions center on the Higgs, do we need to do more than sit 
back and wait for more data for more precision (or a Higgs factory)?

H/T N.Craig, R. 
Petrossian-Byrne 

Current LHC HL-LHC

Snowmass EF Higgs Topical Report
2209.07510

What precision is sufficient to answer the big 
questions, and is it all that we care about?24

It is true that we haven’t “measured” the Higgs potential but 

there are only peculiar physics scenarios that produce large deviations in the shape of the potential  


without leaving imprints elsewhere.

Important to understand which dynamics is really probed when embarking into challenging measurements.

Actually, double Higgs production is also interesting to probe new physics in its tail rather than near threshold 

(where the sensitivity to Higgs self-coupling comes from).

R. Petrossian-Byrne/N. Craig @ LCWS’23

Large self-coupling scenarios.

https://arxiv.org/abs/1704.01953
http://arxiv.org/abs/arXiv:2209.00666
http://arxiv.org/abs/arXiv:1902.05936
http://arxiv.org/abs/arXiv:2202.03453
https://indico.slac.stanford.edu/event/7467/contributions/5704/attachments/2793/7869/Craig_LCWS23.pdf
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ECFA Higgs study group ‘19

50% sensitivity: establish that h3≠0 at 95%CL

20% sensitivity: 5σ discovery of the SM h3 coupling


5% sensitivity: getting sensitive to quantum corrections to Higgs potential
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Higgs@FC WG November 2019 Don’t need to reach HH threshold 

to have access to h3. 


Z-pole run is very important 

if the HH threshold cannot be reached

1

The determination of h3 at FCC-hh 

relies on HH channel, 


for which FCC-ee is of little direct help.

But the extraction of h3 


requires precise knowledge of yt.

1% yt ↔︎ 5% h3


Precision measurement of yt needs ee

2

Higgs self-coupling.
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Discovery potential beyond LHC
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Figure 5. Regions in the stop physical mass plane that are/will be excluded at 2� by EWPT with oblique

corrections (left column), Rb at FCC-ee (mid column) and Higgs couplings (right column) for di↵erent choices

of Xt/
q

m2
t̃1

+m2
t̃2
: 0 (first row), 0.6 (2nd row), 1.0 (3rd row) and 1.4 (last row). We chose the mass eigenstate

with mt̃1
to be mostly left-handed while the mass eigenstate with mt̃2

to be mostly right-handed. For non-zero

choices of Xt, there are regions along the diagonal line which cannot be attained by diagonalizing a Hermitian

mass matrix [32]. Also notice that the vacuum instability bound constrains Xt/
q

m2
t̃1

+m2
t̃2

.
p
3 [76].
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Fig. 8.11: Direct and indirect sensitivity at 95% CL to a heavy scalar singlet mixing with the SM
Higgs boson (left) and in the no-mixing limit (right). The hatched region shows the parameters
compatible with a strong first-order EW phase transition.

poses, Fig. 8.11 shows an example of the region compatible with a two-step phase transition,
where the singlet supports the Higgs in delivering a strong first-order phase transition [463].
Strongly first-order phase transitions are particularly interesting as they could also lead to size-
able gravitational wave signals at future experiments like LISA, linking discoveries at Earth-
based colliders with space interferometry (see Chapter 7). The case of a light singlet scalar,
with mass lower than 125 GeV, is discussed extensively in the section on feebly interacting
particles 8.6.

310 410
 [GeV]A95% C.L. limit on m
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Fig. 8.12: Direct and indirect sensitivity at 95% CL to heavy neutral scalars in minimal SUSY.

Another common extension of the SM Higgs sector is the addition of a second SU(2)
doublet, which naturally appears in supersymmetric extensions of the Higgs sector or in models
with a non-minimal pattern of symmetry breaking. In this case, the scalar sector contains two
CP-even scalars h and H, one CP-odd scalar A and a charged scalar H±. The direct mass reach
of lepton colliders for these scalars is generally close to

p
s/2 independent of tanb , mainly

Examples of improved sensitivity wrt direct reach @ HL-LHC: SUSY
stops

Heavy neutral Higgses

Fan, Reece, Wang ‘14 ESU Physics BB ‘19

Precisely measured EW and Higgs observables are sensitive to heavy New Physics 

Discovery Potential Beyond LHC.

https://inspirehep.net/literature/1333670
https://inspirehep.net/literature/1761133
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Fig. 8.5: Exclusion reach of different colliders on the inverse Higgs length 1/`H = m⇤ (orange
bars, left axis) and the tuning parameter 1/e (blue bars, right axis), obtained by choosing the
weakest bound valid for any value of the coupling constant g⇤.

Unfortunately, no direct reach projection is currently available for the HE-LHC.
The information in Fig. 8.4 can be projected into a single number, as displayed in Fig. 8.5.

The orange bars show the maximum m⇤ (or, equivalently, the minimum Higgs size `H) a given
collider is sensitive to, independently of the value of g⇤. The blue bars show the tuning param-
eter 1/e (which is equal to the conventional tuning parameter D), obtained as follows. Higgs
compositeness can address the naturalness problem, provided it emerges at a relatively low
scale, but the parameter m⇤ is not the most appropriate measure of the degree of fine-tuning re-
quired to engineer the correct Higgs mass and EWSB scale. A better measure is (see e.g., [450])
1/e > (mT /500GeV)2 > m2

⇤/g2
⇤v2, where v = 246 GeV and mT is the top-partner mass. The

second inequality provides the estimate of the reach on e reported in Fig. 8.5. The equation
also displays the impact of fermionic top-partner searches on e . The discovery reach of these
particles at HL-LHC, HE-LHC and FCC-hh are of 1.5, 2 and 4.7 TeV, respectively. These
correspond to a reach on 1/e of 10, 16 and 88.

8.3 Supersymmetry
Supersymmetry (SUSY) remains the only known dynamical solution to the Higgs naturalness
problem that can be extrapolated up to very high energies, in a consistent and calculable way.
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Fig. 8.4: Left panel: exclusion reach on the Composite Higgs model parameters of FCC-hh,
FCC-ee, and of the high-energy stages of CLIC. Right panel: the reach of HE-LHC, ILC,
CEPC and CLIC380. The reach of HL-LHC is the grey shaded region.
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Fig. 8.5: Exclusion reach of different colliders on the inverse Higgs length 1/`H = m⇤ (orange
bars, left axis) and the tuning parameter 1/e (blue bars, right axis), obtained by choosing the
weakest bound valid for any value of the coupling constant g⇤.

Unfortunately, no direct reach projection is currently available for the HE-LHC.
The information in Fig. 8.4 can be projected into a single number, as displayed in Fig. 8.5.

The orange bars show the maximum m⇤ (or, equivalently, the minimum Higgs size `H) a given
collider is sensitive to, independently of the value of g⇤. The blue bars show the tuning param-
eter 1/e (which is equal to the conventional tuning parameter D), obtained as follows. Higgs
compositeness can address the naturalness problem, provided it emerges at a relatively low
scale, but the parameter m⇤ is not the most appropriate measure of the degree of fine-tuning re-
quired to engineer the correct Higgs mass and EWSB scale. A better measure is (see e.g., [450])
1/e > (mT /500GeV)2 > m2

⇤/g2
⇤v2, where v = 246 GeV and mT is the top-partner mass. The

second inequality provides the estimate of the reach on e reported in Fig. 8.5. The equation
also displays the impact of fermionic top-partner searches on e . The discovery reach of these
particles at HL-LHC, HE-LHC and FCC-hh are of 1.5, 2 and 4.7 TeV, respectively. These
correspond to a reach on 1/e of 10, 16 and 88.

8.3 Supersymmetry
Supersymmetry (SUSY) remains the only known dynamical solution to the Higgs naturalness
problem that can be extrapolated up to very high energies, in a consistent and calculable way.

Exclusion reach

ESU Physics BB ‘19

Examples of improved sensitivity wrt direct reach @ HL-LHC: Composite Higgs
Precisely measured EW and Higgs observables are sensitive to heavy New Physics 

Discovery Potential Beyond LHC.

https://inspirehep.net/literature/1333670
https://inspirehep.net/literature/1761133
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• LLP searches with displaced vertices

 e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks


                                         

 


• Rare decays

 e.g.  ALP mixing w/ SM mesons: 


  


• ALPs@ colliders

e.g. 


Craig et al, arXiv:1501.05310

K+ ! ⇡+a ! ⇡+�� (NA62)

KL ! ⇡0a ! ⇡0�� (KOTO)
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Figure 10. Branching ratio of KL æ fi
0
a (in black dashed), branching ratio of K

+
æ fi

+
a (in light

blue, dashed) and proper lifetime of the ALP in meters (in red) of the GG̃ coupled ALP. The mass
range ≥ (135 ≠ 150) MeV is not plotted for a better illustration.

where we have defined �≠1
© (mu + md)(m≠1

u + m
≠1

d + m
≠1
s ), and Ffi is the pion decay

constant given by Ffi ¥ 93 MeV. ◊÷÷Õ is the ÷-÷Õ mixing, whose value has a large uncertainty
and lies in the range ƒ ≠(10¶-20¶) (see e.g. [85–87]). Note the di�erent ma dependence in the
ALP-÷ mixing of the cos ◊÷÷Õ and sin ◊÷÷Õ terms. This is due to the fact that the sin ◊÷÷Õ term
arises from mass mixing, the cos ◊÷÷Õ from kinetic mixing. At the same order in the chiral
Lagrangian, the physical masses of the ALP, pion, and eta mesons are una�ected.

From the ALP mixing with neutral light mesons and the known operators for hadronic
decays of the Kaons in the chiral Lagrangian (see Appendix C), we can calculate the Kaon
decay widths at the leading order (similar calculations can be found in [88]). For simplicity,
in the following we will fix sin ◊÷÷Õ = ≠1/3 [49]. We will comment in the text, how the results
will change if we had fixed a di�erent value of ◊÷÷Õ in the ≠(10¶-20¶) range.

�(K+
æ fi

+
a) = 1

8fi
|gK+fi≠a|

2
|p̨a|

m
2

K

, (5.14)

�(KL æ fi
0
a) = 1

8fi
|
Ô

2‘KgK0fi0a|
2

|p̨a|

m
2

K

, (5.15)

where the CP violating parameter in the Kaon mixing is given by ‘K = 2.23 ◊ 10≠3, and |p̨a|

– 23 –

e+e� ! ha

Christophe Grojean Future Physics CHIPP, Jan. 23-24, 2019!86

Axion Like Particles

Associated production

Andrea Thamm

• ALP associated production with a H

e+

e−

Z

h
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Cross-section ~ 1/s

• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a H

e+

e−
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• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a photon or Z
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<latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU=">AAADkHicZZJNbxMxEIbdLB+lfDQtRy4VSRGHpdotB7hEFHFBiEORSFspCZHtzGat+GNrj0vCKv+EK/wn/g3OJq2yyZxmHs/rnVm/rJDCYZL822lE9+4/eLj7aO/xk6fP9psHhxfOeMuhy4009opRB1Jo6KJACVeFBaqYhEs2+bQ4v7wB64TR33FWwEDRsRaZ4BQDGjab7a+dt+1+TFn7R/kmnbeHzVZyklRxtJ2kq6RFVnE+PGjk/ZHhXoFGLqlzvTQpcFBSi4JLmO/1vYOC8gkdQ89de2oh5kYpGmuvWBgtdsbiq4DC4M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyeJ0u1JRN661jS4tc8Gl8ZA2Gf6TH9XMoHJpilG3RTGx2qiKH6zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyNs6MNb5FCX96q+4JWJ66D1EC/SinWYDC0x1Tw3dp1wgXBbB0Em5KrkM6rj8Oh+WVoYxdbrZXHXFXsr19TMmEnY6vbrd+XSCTCq8KDMg1GthWx+HF6sKhygL8rgzXTTidvJxelJmpyk305bZ8nKpbvkBXlJXpOUvCNn5DM5J13CyQ35Tf6Qv9Fh9D76EH1ctjZ2VprnpBbRl/8K1zGo</latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU=">AAADkHicZZJNbxMxEIbdLB+lfDQtRy4VSRGHpdotB7hEFHFBiEORSFspCZHtzGat+GNrj0vCKv+EK/wn/g3OJq2yyZxmHs/rnVm/rJDCYZL822lE9+4/eLj7aO/xk6fP9psHhxfOeMuhy4009opRB1Jo6KJACVeFBaqYhEs2+bQ4v7wB64TR33FWwEDRsRaZ4BQDGjab7a+dt+1+TFn7R/kmnbeHzVZyklRxtJ2kq6RFVnE+PGjk/ZHhXoFGLqlzvTQpcFBSi4JLmO/1vYOC8gkdQ89de2oh5kYpGmuvWBgtdsbiq4DC4M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyeJ0u1JRN661jS4tc8Gl8ZA2Gf6TH9XMoHJpilG3RTGx2qiKH6zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyNs6MNb5FCX96q+4JWJ66D1EC/SinWYDC0x1Tw3dp1wgXBbB0Em5KrkM6rj8Oh+WVoYxdbrZXHXFXsr19TMmEnY6vbrd+XSCTCq8KDMg1GthWx+HF6sKhygL8rgzXTTidvJxelJmpyk305bZ8nKpbvkBXlJXpOUvCNn5DM5J13CyQ35Tf6Qv9Fh9D76EH1ctjZ2VprnpBbRl/8K1zGo</latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit>
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• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a photon or Z
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<latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU=">AAADkHicZZJNbxMxEIbdLB+lfDQtRy4VSRGHpdotB7hEFHFBiEORSFspCZHtzGat+GNrj0vCKv+EK/wn/g3OJq2yyZxmHs/rnVm/rJDCYZL822lE9+4/eLj7aO/xk6fP9psHhxfOeMuhy4009opRB1Jo6KJACVeFBaqYhEs2+bQ4v7wB64TR33FWwEDRsRaZ4BQDGjab7a+dt+1+TFn7R/kmnbeHzVZyklRxtJ2kq6RFVnE+PGjk/ZHhXoFGLqlzvTQpcFBSi4JLmO/1vYOC8gkdQ89de2oh5kYpGmuvWBgtdsbiq4DC4M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyeJ0u1JRN661jS4tc8Gl8ZA2Gf6TH9XMoHJpilG3RTGx2qiKH6zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyNs6MNb5FCX96q+4JWJ66D1EC/SinWYDC0x1Tw3dp1wgXBbB0Em5KrkM6rj8Oh+WVoYxdbrZXHXFXsr19TMmEnY6vbrd+XSCTCq8KDMg1GthWx+HF6sKhygL8rgzXTTidvJxelJmpyk305bZ8nKpbvkBXlJXpOUvCNn5DM5J13CyQ35Tf6Qv9Fh9D76EH1ctjZ2VprnpBbRl/8K1zGo</latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU=">AAADkHicZZJNbxMxEIbdLB+lfDQtRy4VSRGHpdotB7hEFHFBiEORSFspCZHtzGat+GNrj0vCKv+EK/wn/g3OJq2yyZxmHs/rnVm/rJDCYZL822lE9+4/eLj7aO/xk6fP9psHhxfOeMuhy4009opRB1Jo6KJACVeFBaqYhEs2+bQ4v7wB64TR33FWwEDRsRaZ4BQDGjab7a+dt+1+TFn7R/kmnbeHzVZyklRxtJ2kq6RFVnE+PGjk/ZHhXoFGLqlzvTQpcFBSi4JLmO/1vYOC8gkdQ89de2oh5kYpGmuvWBgtdsbiq4DC4M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyeJ0u1JRN661jS4tc8Gl8ZA2Gf6TH9XMoHJpilG3RTGx2qiKH6zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyNs6MNb5FCX96q+4JWJ66D1EC/SinWYDC0x1Tw3dp1wgXBbB0Em5KrkM6rj8Oh+WVoYxdbrZXHXFXsr19TMmEnY6vbrd+XSCTCq8KDMg1GthWx+HF6sKhygL8rgzXTTidvJxelJmpyk305bZ8nKpbvkBXlJXpOUvCNn5DM5J13CyQ35Tf6Qv9Fh9D76EH1ctjZ2VprnpBbRl/8K1zGo</latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit>
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• ALP decay into photons

Patrick Janot 

Direct	discoveries	(cont’d)	
q  Discover	the	dark	sector	

◆  A	very-weakly-coupled	window	to	the	dark	sector	is	through	light	“Axion-Like	
Particles”	(ALPs)	

➨  γ	+	EMISS	for	very	light	a	
➨  γγ	for	light	a
➨  γγγ		for	heavier	a	

●  Orders	of	magnitude	of	parameter	space	accessible	at	FCC-ee	

CERN, 7-11 Jan 2019 
FCC-ee workshop: Theory and Experiment 
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Associated production

Andrea Thamm

• ALP associated production with a H
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<latexit sha1_base64="AmYk/I2bvMaEmWf/n3Nm55cO2rI="></latexit><latexit sha1_base64="AmYk/I2bvMaEmWf/n3Nm55cO2rI=">AAADknicZZJNbxMxEIbdLh+lfDQt3LhUJEUclmi3EkJCilTUC4ceikTaSkmIbGc2a8UfW3sMCav8Fa7wl/g3OJu0yiZzmnk8r3dm/bJCCodJ8m9nN3rw8NHjvSf7T589f3HQODy6csZbDl1upLE3jDqQQkMXBUq4KSxQxSRcs8n54vz6B1gnjP6GswIGio61yASnGNCwcdS66KTtD61+TFnre/k+nbeGjWbSTqo43k7SVdIkq7gcHu7m/ZHhXoFGLqlzvTQpcFBSi4JLmO/3vYOC8gkdQ8/demoh5kYpGmuvWBgudsbi24DC6M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyZJ0u1JRN661jS4tc8Gl8bA2Gv6TH9XMoHJpilG3RTGx2qiKH2zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyts6MNb5FCX96q+4JaJ66D1EC/SinWYDC0x1Tw3dp1wgXBXB0Em5KrkM6rj8Oh+WVoYxdbrZXHfFXsr19TMmEnY6u7r9+XSCTCq8KDMg1WthWx+El6sKhygL8rgzXTTidvJ1Wk7Tdrp19PmWbJy6R55Td6QdyQlH8kZ+UIuSZdwMiW/yR/yN3oVfYo+R+fL1t2dleYlqUV08R+MCTId</latexit><latexit sha1_base64="AmYk/I2bvMaEmWf/n3Nm55cO2rI=">AAADknicZZJNbxMxEIbdLh+lfDQt3LhUJEUclmi3EkJCilTUC4ceikTaSkmIbGc2a8UfW3sMCav8Fa7wl/g3OJu0yiZzmnk8r3dm/bJCCodJ8m9nN3rw8NHjvSf7T589f3HQODy6csZbDl1upLE3jDqQQkMXBUq4KSxQxSRcs8n54vz6B1gnjP6GswIGio61yASnGNCwcdS66KTtD61+TFnre/k+nbeGjWbSTqo43k7SVdIkq7gcHu7m/ZHhXoFGLqlzvTQpcFBSi4JLmO/3vYOC8gkdQ8/demoh5kYpGmuvWBgudsbi24DC6M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyZJ0u1JRN661jS4tc8Gl8bA2Gv6TH9XMoHJpilG3RTGx2qiKH2zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyts6MNb5FCX96q+4JaJ66D1EC/SinWYDC0x1Tw3dp1wgXBXB0Em5KrkM6rj8Oh+WVoYxdbrZXHfFXsr19TMmEnY6u7r9+XSCTCq8KDMg1WthWx+El6sKhygL8rgzXTTidvJ1Wk7Tdrp19PmWbJy6R55Td6QdyQlH8kZ+UIuSZdwMiW/yR/yN3oVfYo+R+fL1t2dleYlqUV08R+MCTId</latexit><latexit sha1_base64="AmYk/I2bvMaEmWf/n3Nm55cO2rI="></latexit>

L = 3ab�1
<latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU=">AAADkHicZZJNbxMxEIbdLB+lfDQtRy4VSRGHpdotB7hEFHFBiEORSFspCZHtzGat+GNrj0vCKv+EK/wn/g3OJq2yyZxmHs/rnVm/rJDCYZL822lE9+4/eLj7aO/xk6fP9psHhxfOeMuhy4009opRB1Jo6KJACVeFBaqYhEs2+bQ4v7wB64TR33FWwEDRsRaZ4BQDGjab7a+dt+1+TFn7R/kmnbeHzVZyklRxtJ2kq6RFVnE+PGjk/ZHhXoFGLqlzvTQpcFBSi4JLmO/1vYOC8gkdQ89de2oh5kYpGmuvWBgtdsbiq4DC4M4NSk2RCVbTlYwZOaojqpyimG/BzGh0W9TNVLjyeJ0u1JRN661jS4tc8Gl8ZA2Gf6TH9XMoHJpilG3RTGx2qiKH6zqTFGEaRqlT5SUKa37WqUNF7cxubI1i8ivsEaKGKyNs6MNb5FCX96q+4JWJ66D1EC/SinWYDC0x1Tw3dp1wgXBbB0Em5KrkM6rj8Oh+WVoYxdbrZXHXFXsr19TMmEnY6vbrd+XSCTCq8KDMg1GthWx+HF6sKhygL8rgzXTTidvJxelJmpyk305bZ8nKpbvkBXlJXpOUvCNn5DM5J13CyQ35Tf6Qv9Fh9D76EH1ctjZ2VprnpBbRl/8K1zGo</latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit><latexit sha1_base64="7tz6HfZnYI/sf1QaLWAOi7F0mDU="></latexit>
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• ALP decay into leptons

Material from A. Thamm

Christophe Grojean Future Physics CHIPP, Jan. 23-24, 2019!86

Axion Like Particles

Associated production

Andrea Thamm

• ALP associated production with a H
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Cross-section ~ 1/s

• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a H
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• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a photon or Z
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• ALP decay into photons

Associated production

Andrea Thamm

• ALP associated production with a photon or Z
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• ALP decay into photons

Patrick Janot 

Direct	discoveries	(cont’d)	
q  Discover	the	dark	sector	

◆  A	very-weakly-coupled	window	to	the	dark	sector	is	through	light	“Axion-Like	
Particles”	(ALPs)	

➨  γ	+	EMISS	for	very	light	a	
➨  γγ	for	light	a
➨  γγγ		for	heavier	a	

●  Orders	of	magnitude	of	parameter	space	accessible	at	FCC-ee	

CERN, 7-11 Jan 2019 
FCC-ee workshop: Theory and Experiment 
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1712.07237	

Associated production

Andrea Thamm

• ALP associated production with a H
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• ALP decay into leptons

Material from A. Thamm

Knapen, Thamm  arXiv:2108.08949

FIG. 1: Example of a Twin Higgs collider event. The SM-like Higgs decays through a loop of

the twin tops into a pair of twin gluons, which subsequently hadronize to produce various twin

glueballs. While some glueballs are stable at the collider scale, G0+ decay to Standard Model

particles is su�ciently fast to give LHC-observable e↵ects, including possible displaced vertices.

The hĝĝ coupling, indicated by a black dot, is generated by small mixing of the Higgs and the twin

Higgs.

the gluino. With large color charge and spin, the gluino is phenomenologically striking over

much of motivated parameter space, almost independent of its decay modes [12–14]. In Twin

Higgs models, the analogous two-loop role is played by twin gluons, which can again give rise

to striking signatures over a large part of parameter space, not because of large cross-sections

but because they, along with any light twin matter, are confined into bound states: twin

hadrons. Together with the Higgs portal connecting the SM and twin sectors, the presence

of metastable hadrons sets up classic “confining Hidden Valley” phenomenology [15–21],

now in a plot directly linked to naturalness.

A prototypical new physics event is illustrated in Fig. 1. The scalar line represents the

recently discovered 125 GeV Higgs scalar. This particle is primarily the SM Higgs with

a small admixture of twin Higgs; it is readily produced by gluon fusion. But because of

its twin Higgs content, it has at least one exotic decay mode into twin gluons, induced

by twin top loops, with a branching fraction of order 0.1%. The twin gluons ultimately

hadronize into twin glueballs, which have mass in the ⇠ 1 � 100 GeV range within the

minimal model. While most twin glueballs have very long lifetimes and escape the detector

as missing energy, the lightest 0++
twin glueball has the right quantum numbers to mix with
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e+e� ! �a
Astro/Cosmo → long-lived ALPs


colliders → short-lived ALPs MeV+

Simon Knapen, Andrea Thamm: Direct discovery of new light states at the FCCee 3
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Fig. 2. Tree-level Feynman diagram for the production of an axion in association with a photon or Z-boson.
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Fig. 3. Projected sensitivity of the FCCee (in purple) in the process e+e� ! �a on the ALP-photon coupling (left) and the
ALP-lepton coupling (right). Existing bounds on the parameter space are shown in grey. Reproduced from [19] with permission
of the authors.

with gs, e the strong and electromagnetic couplings respectively. ✓w is the Weinberg angle and ⇤ is proportional to
the axion decay constant fa. cff , cGG, cWW , c�� , c�Z and cZZ are model dependent parameters.

Explicit models relate these parameters to each other in model-specific ways and reduce the number of free pa-
rameters. One hereby generally expects the couplings to gauge bosons to be loop suppressed and of the same order,
such that the gluon couplings dominate since gs � e. However this does not imply that a hadron collider is always the
most sensitive machine: For ma . 100 GeV, the QCD backgrounds at e.g. the LHC are often simply too large, and the
discovery mode could very well be through the electroweak couplings at the FCCee. Moreover, there exist models for
which cGG ⌧ cWW , c�� , c�Z , cZZ [17], and for which a high energy lepton collider is the only viable probe. Specifically
at the FCCee, ALPs can be produced either in exotic Z decays (left panel of Fig. 2) or in association with a photon
or a Z-boson via an intermediate photon (right panel of Fig. 2). The FCCee is expected to produce an unprecedented
number of 1012

Z-bosons during its run at the Z-pole,
p

s = mZ , which will let us search for extraordinarily small
branching fractions for Z ! a� decays. Once produced, the presence of an ALP can lead to di↵erent signatures inside
the detector. ALPs can either be long-lived and travel through the detector unscathed or they can decay further into
leptons, quarks or gauge bosons. Depending on their lifetime, ALPs may decay promptly at the interaction point or
after they have travelled a certain distance inside the detector leading to a plethora of di↵erent signatures.

The processes e
+
e
�

! Za ! Z�� and e
+
e
�

! �a ! 3� [18, 19], where the latter includes the production and
decay of an on-shell Z-boson at the Z-pole, depend on the couplings c�� , c�Z , cZZ , all of which can be related to each
other in more concrete models. However, at the FCCee it is even possible to access c�� and c�Z separately. The run
at the Z-pole enhances the contribution of c�Z to the process e

+
e
�

! �a with respect to c�� and thus c�Z can be
accessed at the Z-pole run while c�� can be measured at runs with a higher center-of-mass energy. Fig. 3 shows the
parameter space that can be explored by the FCCee. Masses between hundreds of MeV and hundreds of GeV can be
probed and the FCCee can push to very small values of c�� .

The FCC also has great potential to probe the axion coupling to leptons, c``, which can be present in DFSZ
type models. Interestingly, the dominant production mode at the FCCee is still in association with a photon or Z-
boson where the ALP now couples to photons via a lepton loop. The ALP then decays to the heaviest lepton that is
kinematically accessible. We show the expected sensitivity of the FCCee on the ALP mass and its coupling to leptons
in the right panel of Fig. 3.

In addition to direct measurements, the FCCee can probe electroweak precision observables and the electromagnetic
coupling constant with unprecedented precision leading to further stringent constraints on c�� and c�Z .

Gori et al arXiv:2005.05170

Direct Searches for Elusive New Physics

https://arxiv.org/abs/1501.05310
https://inspirehep.net/literature/1908207
https://arxiv.org/abs/2005.05170
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illustrated in Fig.7, and demonstrates the typical complementarity between the Z factory FCC-ee
and a high-energy linear e

+
e
� collider.

Figure 7: Expected sensitivity to Axion-like particles in various future facilities. The reach of FCC-ee

is at very small couplings in Z decays, while the reach of linear colliders is at higher masses for somewhat

larger couplings. From Ref. [1]

Figure 8: Expected sensitivity to Heavy-Neutral Leptons (a.k.a. Right Handed Neutrinos) in various

future facilities. The reach of FCC-ee is for very small heavy-light mixing angle in Z decays, down to the

see-saw limit; it is complemented up to very high masses (60 TeV or more) for heavy-light neutrino mixing

larger than 10
�5

by constraints from Electroweak and tau decay precision measurements. See [1], Fig 8.19.

Another well-motivated example of new physics is provided by neutrinos. Many neutrino mass
models naturally predict the existence of heavy neutrino states, called Heavy Neutral Leptons
(HNL, mostly of right-handed chirality or “sterile”) which mix with the known light, active neutrinos
with a typical mixing angle |✓⌫N|2 / m⌫/mN. Since both light and heavy neutrino masses are
unknown, a rather large range of mixing angles should be explored. These scenarios have several
possible consequences: (i) the direct observation of a long-lived HNL in Z, W, and Higgs decays
and in tau, b- or c-hadron semi-leptonic decays, both mass and mixing sensitive; (ii) the mixing of
the light neutrinos with heavier states, which leads to a violation of the SM relations in EWPOs;
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Important to understand

1. how neutrinos acquired mass

2. if lepton number is conserved


3. if leptogenesis is realised

Search for νRH.

Fig. from mid-term report
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The Higgs could be a good portal to Dark Sector

— rich exotic signatures —

Z. Liu @ CEPC 2020

10/26/2020Zhen Liu                  Higgs Exotic Decays                 CEPC 2020 9

Picture of pp vs ee
LHC’s strength
Hard at LHC due to
missing energy
Hard at LHC due to
hadronic
background

ZL et al, 1810.09037

Lepton colliders’ strength

Exotics/Long Lived Particles.

https://indico.ihep.ac.cn/event/11444/session/2/contribution/202/material/slides/0.pptx
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The Higgs could be a good portal to Dark Sector

— rich exotic signatures —

Z. Liu @ CEPC 2020

10/26/2020Zhen Liu                  Higgs Exotic Decays                 CEPC 2020 22

Exotic Decay summary

We visualize the sensitivity on Higgs exotic decay branching factions with some reasonable choice of model 
parameters. 

The HL-LHC are from various studies and projections available in the literature;
The lepton collider sensitivities (except for the first channel, ℎ → EFG) are from our study with different ;; →
<6 integrated luminosities and beam polarizations for different colliders.

How to improve?

> Dedicated detectors, see e.g. talk by R. Gonzalez Suarez @ FCC week 2021

Exotics/Long Lived Particles.

https://indico.ihep.ac.cn/event/11444/session/2/contribution/202/material/slides/0.pptx
https://indico.cern.ch/event/995850/contributions/4406347/attachments/2273713/3862016/FCC-week-LLP.pdf

