Belle II and the DEPFET Pixel Vertex Detector PXD Shedding light on the Matter-Antimatter Mystery Christian Kiesling **Max-Planck-Institute** for Physics

and Ludwig-Maximilians-University

the light from distant galaxies is "red-shifted": the galaxies are receding the Universe is expanding

... and is cooling

was hotter at earlier times

History of the Universe

 $\overline{\mathbf{v}}$

Anti-Matter

пп

After Inflation, the very early Universe was dominated by radiation (= extremely high energetic photons)

Why did matter survive?

(violation of the "CP" symmetry)

n	Time	10 ⁻⁴⁴ s	10 ⁻³⁶ s	10 ⁻¹⁰ s	10 ⁻⁵ s	10²s	4 x 10⁵J.	10 ⁹ J.	13.7x 10 ⁹ J.
:om	T[K]	10 ³²	10 ²⁹	10 ¹⁶	10 ¹²	10⁰	3000	15	2.7
ern	E[GeV]	10 ¹⁹	10 ¹⁶	1000	10 ⁻¹	10 ⁻⁴	3 x 10⁻¹⁰	10 ⁻¹²	2.3 x 10 ⁻¹³

sing zhe workshop on Singon Sensors for Radiation Detection and Quantum Applications, May

Symmetry Violations in the Weak Interaction

T.D. Lee

C.N. Yang

C, P violated maximally in weak interactions

1957

J. Cronin

M. Kobayashi

T. Maskawa

2.5 5 7.5

-ξ_f∆t(ps)

Small CP violation in neutral K system

O(1) CP

violation

generations

of quarks

and 3

OF EVENTS

MBER

1980

2008

C. Kiesling, 55. International Winter Meeting on Nuclear Physics, January 23-27, 2017, Bormio, Italy

-7.5

-5 -2.5 0 The Standard Model (SM) describes all experimental data so far including CP violation, yet: SM is only a "low energy" approximation

Why Looking for New Sources of **OP**

Or: "New Particles" in Quantum Loops

NP "penguin"

Principle:

New particles in the loop contribute new amplitudes: ->,,**Quantum Loop Effects**"

Expect observables to deviate from SM prediction !!

e.g. NP=SUSY:

additional diagrams, e.g. from gluino-squark contributions

$$ightarrow \Lambda_{NP}$$
 no limit on mass !

Precision experiments with *B* mesons

SuperKEKB and Belle I

Goal: massive increase of statistics = precision

Belle-II Collaboration, founded in Dec. 2008

Strong European participation: Austria, Czech Republic, Germany, Italy, Poland, Spain (Pixel Vertex Detector, Si Strip Detector) Slovenia (PID)

Tsukuba, Japan 🚽

SuperKEKB Focusing Quadrupoles

C. Kiesling, 2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, May 12-14, 2025

.. only the Vertex Detector is missing ...

C. Kiesling, 2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, May 12-14, 2025

ТШ

LMU

First Version of PXD, installed in 2018

ТШП

2nd Version of PXD, installed in 2023

ТШ

B mesons are in a quantum entangled state!

electron and positron beams at different energies -> CMS is boosted *B* mesons at rest in CMS -> boosted in the lab system

C. Kiesling, 2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, May 12-14, 2025

Backup

Asymmetric beam energies: translate decay time to decay length

 $\Delta z \sim 150 \,\mu m$ \longrightarrow need excellent vertex detection

CPT: conserved in all local quantum theories exhibiting Lorentz-invariance

Going back in Time ...

- Today: age of the Universe is about 13.7 billon years
 T ~ 2.7°K (CMB)
- at an age of about 1 billion years: gas nebulae, first stars and galaxies, T ~ 15 °K
- 400 000 years: atoms are formed, the Universe becomes transparent (photons travel freely through space -> CMB) T ~ 3000 °K (E = 0.3 eV)
- at an age of 3 min: first light nuclei are formed: p, d, ⁴He, ³He, Li ("nucleo-synthesis") T ~ 10⁹ °K (E ~ 100 keV)

Going back in Time ...

- At the age of tens of seconds: electrons and anti-electrons annihilate, a few electrons remain
- at an age of 1 μs: protons have mostly annihilated with anti-protons, a few protons remain
- protons and anti-protons are formed from quarks and anti-quarks T ~ 10¹³ °K (100 MeV)
- < 10⁻¹⁰ s (E > 1000 GeV)
 Superheavy particles X and X decay into q, q, e⁻, e⁺ and v, v
 slight excess of q and e⁻ over q and e⁺ ("CP violation" in X decay).
 -> explains the disappearance of antimatter: annihilation with matter

Going back in Time ...

- < 10^{-36} s (E > 10^{16} GeV -> "GUT scale")
 End of Inflationary period
 between 10^{-43} s and 10^{-36} s the
 Universe has expanded exponentially
 by a factor ~ 10^{50}
- Inflation necessary to explain several cosmological puzzles such as the homogeneity of CMB over (today) non-causally connected distances
- inflation driven by a hypothetical scalar field ("inflaton")
- After inflation, the inflaton's kinetic energy is transformed into superheavy particles ("X") and their anti-particles in equal numbers ("reheating")
 "matter – antimatter symmetry" (CPT)