

Magnetic microcalorimeters: Cryogenic quantum sensors for demanding applications

Sebastian Kempf

2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications | Lake Starnberg | May 14, 2025

www.kit.edu

Cryogenic microcalorimeters

thermal detector, i.e. not limited by (Fano) statistics or excitation energy

2 2025-05-14 S. Kempf | Magnetic microcalorimeters: Cryogenic quantum sensors for demanding applications

Temperature sensors

Temperature sensors

Metallic magnetic calorimeters (MMCs)

Example: Metallic magnetic calorimeter for radionuclide metrology

Magnetic microcalorimeter for measuring EC spectrum of ion-implanted Fe-55 source

single detector (before deposition of second absorber half)

detectors are application-specific customized

SQUID-based detector readout

dc-SQUIDs = magnetic flux to voltage / current converters

- compatibility with mK operation temperatures
- low power dissipation: *P*_{diss} ~10 pW…1 nW
- **•** near quantum-limited noise performance: $\varepsilon \sim 1 \text{ h possible}$

In-house development of multi-stage dc-SQUIDs

SQUID-based amplifier chain with ultrafast FLL feedback electronics

In-house development of multi-stage dc-SQUIDs

In-house development of multi-stage dc-SQUIDs

Ŵ

Applications we are working on...

MMC with integrated SQUID readout for soft and tender X-ray spectroscopy

M. Krantz,, S. Kempf, Appl. Phys. Lett. **124** (2024) 032601 F. Toschi,, S. Kempf *et al.*, Phys. Rev. D **109** (2024) 043035

Challenging detector fabrication

thermal isolation of shunt resistors required membrane fabrication

works fine, but technologically very demanding!

102025-05-14S. Kempf | Magnetic microcalorimeters:
Cryogenic quantum sensors for demanding applications

M. Krantz,, S. Kempf, Appl. Phys. Lett. 124 (2024) 032601

Current dark matter landscape

DELight - Direct Search Experiment for Light Dark Matter with superfluid Helium

joint initiative by KIT, Heidelberg University, and University of Freiburg

DELight - Direct Search Experiment for Light Dark Matter with superfluid Helium

joint initiative by KIT, Heidelberg University, and University of Freiburg

MMC-based athermal phonon detectors

idea: measure athermal phonon population created by interacting particle

ims

Ongoing R&D: LAMCAL optimization

usage of custom Monte Carlo simulation for optimzation of phonon collector geometry and distribution

phonon collector distribution will set requirements for LAMCAL geometry

Expected LAMCAL performance

Sensitivity projection of DELight

A next-generation neutrino mass measurements

Sensitivity studies

- sub-eV energy resolution
- interaction of electrons with particle absorbers
- cryogenic microcalorimeters are not ,made' to work in magnetic background fields
- the smaller the magnetic background field, the larger the sensitive area of the detector
- cryogenic detector (mK) coupled to a warm (RT) spectrometer

Detector response for electrons and photons

spectroscopy of ⁸³Rb/^{83m}Kr source emissions

N. Kovac, F. Adam et al., arXiv: 2502.05975

Detector response for electrons and photons

spectroscopy of ⁸³Rb/^{83m}Kr source emissions

- No significant energy losses due to backscattering, dead layer etc.

N. Kovac, F. Adam et al., arXiv: 2502.05975

Silicon drift detectors vs. MMCs

MMCs outperform conventional semiconductor detectors

N. Kovac, F. Adam et al., in preparation

21 2025-05-14 S. Kempf | Magnetic microcalorimeters: Cryogenic quantum sensors for demanding applications

What about the magnetic background field?

very preliminary results

example: silicon absorber with $V_{\rm abs} = 2\,{
m mm} \times 2\,{
m mm} \times 20\,{
m \mu m}$

10¹ 101 101 101 B = 5 mT B = 10 mT B = 15 mT B = 20 mT energy resolution ΔE_{FWHM} 10 $_{-1}$ energy resolution ΔE_{FWHM} energy resolution ΔE_{FWHM} energy resolution ΔE_{FWHM} 10⁰ 10⁰ 10⁰ 10^{-1} 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10 10 100 120 100 20 40 60 80 100 120 0 20 40 60 80 20 40 60 80 120 0 20 40 60 80 100 120 0 0 temperature T (mK) temperature T (mK) temperature T (mK) temperature T (mK) 10¹ 10¹ 10¹ 101 $B = 30 \, \text{mT}$ $B = 40 \, \text{mT}$ $B = 25 \,\mathrm{mT}$ $B = 35 \, \text{mT}$ energy resolution ΔE_{FWHM} energy resolution ΔE_{FWHM} energy resolution ΔE_{FWHM} energy resolution ΔE_{FWHM} 10⁰ 10⁰ 10⁰ 10⁰ 10-1 10^{-1} 10^{-1} 10-1 10-2 10^{-2} 10^{-2} 10 20 80 120 20 60 80 100 120 20 40 60 80 100 20 60 80 100 0 40 60 100 0 40 0 120 0 40 120 temperature T (mK) temperature T (mK) temperature T (mK) temperature T (mK)

222025-05-14S. Kempf | Magnetic microcalorimeters:
Cryogenic quantum sensors for demanding applications

What about the magnetic background field?

example: silicon absorber with $V_{\rm abs} = 2 \,\mathrm{mm} \times 2 \,\mathrm{mm} \times 20 \,\mu\mathrm{m}$

very preliminary results

Research directions besides applications...

- SQUID multiplexing
- readout electronics
- Iarge-volume batch fabrication

- novel sensor concepts ("going beyond MMCs + TES")
- improving gain and stability of existing detectors
- fighting against parasitic noise sources

Competence Center for High-resolution Superconducting Sensors (HSS)

HSS

strategic HGF investment

- addresses the ever-increasing need for large-scale / large-volume QS arrays
- three pillars of HSS:
 - QS development
 - QS prototype and batch fabrication
 - QS application
- allows to compete with internationally renowned facilities, e.g. MIT-LL, NASA/GSFC, NIST, ...
- continuous equipment extensions and technology (r)evolutions to enable next generation QS development

photoresist processing, direct

laser lithography

ICP-PECVD

insulator deposition

UHV material deposition cluster

magnetron sputtering, e-beam evaporation, in-situ oxidation, ion-based substrate cleaning

3 x ICP-RIE

CMP technology

F- and CI-based RIE of metals, dielectrics, and Si

Wafer polishing for multilayer supercond. structures

Cryogenic multiplexing

Frequency-division multiplexing (FDM)

idea: detector signals are modulated on independent MHz / GHz carrier signals

Microwave SQUID Multiplexing

Cryogenic SQUID multiplexing

Signal size / mΦ₀

D. Richter, ..., S. Kempf, IEEE Trans. Appl. Supercond. 33 (2023) 2500705

time traces of 16 detector pixels

Summary, outlook, and acknowledgments

magnetic microcalorimeters are an incredible powerful tool for various applications

my present group