

X-ray Beam

Silicon Drift Detectors and Related Electronics for Fundamental Physics and Synchrotron Applications

Giacomo Borghi *on behalf of* RadLab Politecnico di Milano and INFN, Milano, Italy

2nd Workshop on Silicon Sensors, Berg – 13th of May 2025

The RadLab Team @ Politecnico di Milano

Part of the Electronic Engineering Department, among whose founders was Emilio Gatti.

People:

- 3 staff.
- ~20 Ph.D. students and post-docs.
- ~20 M.Sc. thesis students/year.

Focus:

- Design and production of low-noise read-out electronics.
- Development of radiation detection modules and instrumentation.

Main application fields:

- X-ray detectors (SDDs) for x-ray spectroscopy.
- Gamma-ray detectors for medical applications.

SDD Detection Modules and Readout Electronics for Fundamental Physics Experiments

The TRISTAN Detector

SDD

3 mm_

path of electrons

a) Copper column

b) CeSiC block

ᠯ᠇ᠮ᠇ᡟ᠇ᡟ᠇ᡟ᠇ᡟ᠇

166 mini-SDDs (3mm) in each array

4 cm

3 mm

`•`T•`T•`T•`T•`T•

• T • T • T • T •

- ~3500 total channels
- 100kcps per channel
- SDD with integrated JFET designed and produced at MPI HLL

20 cm

Spectrometer

c) 166-pixel monolithic SDD matrix

Electronics Readout (in-vacuum)

Giacomo Borghi – Politecnico di Milano and INFN

The SIDDHARTA Experiment

Strong interaction studies allow energy through precise X-ray spectroscopy measurements of Kaonic atoms transitions

Main goal: Measurement of the strong-interaction-induced shift and width of the 1st state of kaonic deuterium

[1] C. Curceanu et al. "Kaonic atoms at the DAΦNE collider: a strangeness adventure" 2023 Front. Phys. 11:1240250 DOI:10.3389/fphy.2023.1240250

SIDDHARTA-2: The Experimental Apparatus

48 large-area monolithic SDD arrays:

- 2 × 4 pixels, 8 mm pixel pitch (produced by FBK), 384 channels in total (246 cm²)
- silicon thickness: 450 μm
- Readout electronics (developed by Polimi):
 - Front end: CUBE charge-sensitive amplifier (on the detection module)
 - Pulse processing: SFERA ASIC (analog pulse-processor)
- Resolution of SIDDHARTA-2 SDDs: 157eV @
 6.4 keV (linearity below 2–3 eV)
- Measurement conditions: 100 °K 10-5 mbar

Recent Results with New Kaonic Atoms

New 1-mm-Thick Detection Modules

New single-SDD module for higher X-ray energies:

- 1-mm-thick SDD to improve sensitivity to highenergies
- New focusing electrode to reduce charge sharing

Characterization results:

 Good energy resolution: ~140 eV @ Mn-kα line, -30 °C

Next steps:

• **60 modules** based on 1-mm-thick SDD are currently **being assembled in FBK** for future experiment upgrade

L.G. Toscano et al. "Development of high-efficiency X-ray detectors based on 1 mm thick monolithic SDD arrays" 2024 JINST 19 P07039

SDD Arrays for X-ray Spectrometers in Synchrotron applications

Motivation:

Develop low-noise and versatile **instruments** based on monolithic arrays of Silicon Drift Detectors for **high-rate synchrotron applications** (mainly XRF, XAFS, and XFM)

Detector requirements:

- X-ray energy range: 0.2 keV 20 keV (Si detection region)
- Best resolution (~125 eV of FHWM Mn-Kα) at optimum shaping time and low rate
- Good resolution (≤ 200 eV) at short shaping time and high throughput (> 1 Mcps/ch.)
- Modular and scalable design, to easily increase sensitive area and adapt with different experiment configurations

CUBE: CMOS Charge Sensitive Amplifier

5.5

6.5

Energy (keV)

Giacomo Borghi – Politecnico di Milano and INFN

ARDESIA-16 Detection Module

Mo Mask

- 16-channel monolithic SDD array: 5-mm pitch, thickness
 450 and 1000 μm
- 500 µm thick **Molybdenum (or Zirconium) Mask** to prevent charge sharing phenomena
- Total collimated area is **324 mm²**
- Four custom-designed 4-channel CUBE Preamplifiers
- Preamplifier and Detectors are glued to an Alogen-free PCB

Giacomo Borghi – Politecnico di Milano and INFN

ARDESIA-16 Spectrometer

- Hosts the detection module
- **TEC cooling** with a PI controller to keep the Detector temperature stable
- ≈ 0.45 sr Maximum Solid Angle at sample distance of 20 mm
- Window material: Be or Polymer

- Two external units for bias and cooling control
- 16 Coaxial cables to be connected to an external DPP
- USB connection to a PC

• **Dedicated GUI** to monitor and control the spectrometer

ARDESIA-16: New ESRF version

Feature: stand-alone vacuum by ion pump inside the instrument.

ARDESIA Spectrometers in Europe

ESRF ID16A: Count-Rate and Energy Resolution

10⁹

10⁸

107

Counts

10⁵

10⁴

10⁴

Second version of ARDESIA-16 custom designed for ID16A (ESRF, Grenoble), coupled with two **FalconX8 DPPs** (XIA)

Sample: 10 nm thick square of Nickel on a Si-substrate (20 μ m × 20 μ m) Energy of the Beam: 17 keV

Giacomo Borghi – Politecnico di Milano and INFN

POLITECNICO

MILANO 1863

ESRF ID16A: XFM on a Biological Sample

Cryo-CLEM (optical clearing) XRF (2D, 30nm pixel size, 50ms/pt) Gd 5 μm Tb Zn **Nucleus** Mitochondria Lysosomes X-ray phase (2D, 25nm pixel) 1 μm MDA-MB-231 human breast cancer cells X-ray phase

Giacomo Borghi – Politecnico di Milano and INFN

exposed 24 h to pegylated Gd/Tb nanohybrids

From ARDESIA-16 to ARDESIA-64...

ARDESIA-64 Detection module

- **64-channel** monolithic **SDD** array (**1mm-thick**)
- 16 custom-designed 4-channel CUBE
- Preamplifier and detectors are glued to a highdensity rigid-flex PCB
- 2-stage TEC coupled to water cooling

4ch CUBE ASIC

First Prototype: Preliminary Tests

Preliminary measurements:

- 1 mm thick SDD
- 59 working channels: 92% yield
- ⁵⁵Fe at low count rate: ~15 kcps
- Detector Temperature = -30 °C
- Peaking time: 1 µs

Giacomo Borghi – Politecnico di Milano and INFN

First Prototype: Preliminary Tests

First Prototype: Preliminary									
									200
1	142.3	138.4	137.2	136.8	139.7	139.6	137.6	136.5	200
2	143.1	143.2	138.6	139.5	141	147	141.8	146.1	- 190
3	168.4	143.6	139.2	139.6	137.8	140	145.1	139.9	- 180
4	199	144.7	138.1	136.8	138	141.4	153	147.8	- 170
5	138.2	139	137.7	138.7	295.7	169.8	137.9	154.4	- 160
6	138.4	138.2	156.1	140	159.1	138.9	140.6	142.1	150
7	143.8	148.5	153.1	149.6	154.6	159.2	166.4	147.2	- 150
8	542.3	120.2	371.7	158.9	169.8	232.3	303.7	239.1	- 140
	1	2	3	4	5	6	7	8	

Preliminary measurements:

- 1 mm thick SDD ٠
- 59 working channels: 92% yield
- ⁵⁵Fe at low count rate: ~15 kcps •
- Detector Temperature = -30 °C ۲
- Peaking time: 1 µs

Giacomo Borghi – Politecnico di Milano and INFN

The ASCANIO Detector

Designed for X-ray fluorescence microscopy (**XFM**) imaging in synchrotron beamlines

Detector Installed @ PETRA III P06

- ASCANIO detector installed last week @ PETRA III P06
- Instrument immediately operational
- Comparison with current system (Vortex 4ch) showed a significant improvement in statistics during XFM measurements

Charge Sharing in Monolithic Arrays of SDDs

Charge Sharing in Monolithic Arrays of SDDs

Charge Sharing Region: Amplitude vs. Rise Time

Characterization of SDD array response:

- Scan using a micro-focused laser
- Acquisition of the **anode signals** using **oscilloscope**
- The charge sharing (CS) region shows a decrease in signal amplitude and increase in rise time
- Extension is **75 μm** on each side of the **pixel edge**
- ~14% of the total pixel area

MILANO 1863

Charge Sharing Region: Amplitude vs. Rise Time

Characterization of SDD array response:

- Flood irradiation using uncollimated ⁵⁵Fe source
- Acquisition of the **anode signals** using **oscilloscope**
- Similar correlation between amplitude and rise time found in CS events

Charge Sharing Reconstruction Algorithm

Giacomo Borghi – Politecnico di Milano and INFN

Charge Sharing Reconstruction Algorithm

Giacomo Borghi – Politecnico di Milano and INFN

MILANO 1863

Active Collimation vs. CS Events Recovery

Conclusions

- POLIMI is developing **multi-element X-ray spectrometers** based on monolithic arrays of SDDs, including the full electronic readout chain.
- One application is in fundamental physics experiments for x-ray/e⁻ precision spectroscopy, covering very large areas.
- Another applications is in synchrotron beamlines for high-count-rate measurements:
 - **ARDESIA-16** is ready to be used in different configurations.
 - **ASCANIO** spectrometer has been installed at DESY within 2025.
 - ARDESIA-64 is currently being developed.
- Active collimation and multi-channel electronics are under study.
- POLIMI is available to develop/adapt spectrometer designs according to **specific experiment requests**.

Thank you for your attention!

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Giacomo Borghi – Politecnico di Milano and INFN