

Norbert Meidinger Max Planck Institute for extraterrestrial physics, Garching

2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications 13 May 2025

2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, N. Meidinger, 13 May 2025

X-ray satellite missions with PN-CCD Detectors

- XMM-Newton: ESA satellite motivated PN-CCD detector development: *launch Dec. 1999*
- eROSITA: Optimization of PN-CCD detector: *launch July 2019*
- Einstein Probe: launch January 2024
- **SVOM:** *launch June 2024*
- **eXTP:** *launch January 2030 (planned)*
- **SPICE:** PN-CCD detector development for **future X-ray missions**

XMM-Newton

EPIC-PN camera of XMM-Newton

• PN-CCD: single X-ray photon counting detector with high energy, time and spatial resolution

XMM-Newton

PN-CCD

- transfer gates: pn-junctions
- fully depleted = 300 μm
 - → back-illuminated: high QE
 - + radiation hard against soft protons
- parallel transfer & readout architecture
- 6 cm x 6 cm PN-CCD

pixel size

CAMEX & TIMEX

150 x 150 μm²

to EPEA

to EPEA

Quadrant #3

Quadrant #2

- = 12 CCDs (64 channels x 200 rows)
- readout time: 4.6 ms / 3 cm²CCD unit

XMM-Newton

EPIC-PN camera operating modes

Strüder et al., A&A (2001)

mode	field of view	time	out of time	life time	brightest point source
	(FOV)	resolution	(OOT) events	with OOT events	for XMM
	in pixel format	in ms	in $\%$	in $\%$	in counts s^{-1}
	in arc min.				in erg cm ^{-2} s ^{-1} *
\mathbf{FF}	398×384	73.3	6.2	100	6
	27.2×26.2				8.1×10^{-12}
eFF	398×384	199.2	2.3	100	for extended sources
	27.2×26.2				only
LW	198×384	47.7	0.15	94.9	9
	13.5×26.2				1.2×10^{-11}
SW	63×64	5.7	1.1	71.0	100
	4.3×4.4				1.4×10^{-10}
TI	199×64	0.03	100	100	4000
	13.6×4.4				5.9×10^{-9}
BU	20×64	0.007	depends on	3.0	60 000
	1.4×4.4		\mathbf{PSF}		8.1×10^{-8}

XMM-Newton

EPIC-PN camera operating modes

Full Frame & Extended Full Frame

Large Window

0

0

 \bullet

0

Timing Mode in Quadrant 1

XMM-Newton EPIC-PN camera spectra + imaging

Calibration spectrum with the internal radioactive source

Strüder et al., NIM A 512 (2003)

XMM-Newton

EPIC-PN

Status of PN-CCD detector aboard XMM-Newton till today:

• all 12 CCDs operational

• operating parameters unchanged

Energy resolution: Δ FWHM/(FWHM \cdot t) ~ 0.2% /y @1.5keV

Very minor degradation as expected

EPIC-PN camera summary

- EPIC-PN camera onboard XMM-Newton operates successfully since 1999 till today
- Performance still excellent + stable
- All instruments (EPIC-PN, EPIC-MOS1+2, RGS1+2) are fully functional
- XMM-Newton observation proposals over-subscribed by factor 7 (most EPIC-PN)
- Spacecraft fully healthy and fuel until 2034+

eROSITA PN-CCD Detector

- ► frame store
- Excellent energy resolution in energy band [0.2 keV; 10 keV]
- Image area: 28.8 x 28.8 mm²
- Pixel size: 75 x 75 µm² → 384 x 384 Pixel ⇒ 384 parallel signal processing channels

Image readout: 9.2 ms

- eROSITA: cycle time: 50 ms
 - minimize heat dissipation ((40 ms CAMEX off)
 - \rightarrow T = -95°C (best wrt radiation damage)
 - on-board event processing

→ option 1: external filter option 2: new: on-chip filter

MPE

eROSITA Camera (Assembly)

PN-CCD Detectors in Space

All PN-CCD Detector Modules tested (GEPARD chamber) at MPE with 55 Fe \rightarrow performance test + voltage optimization

 $FWHM(5.9keV) \le 140eV$ Noise ≈ 2.5 el. ENC, # bad pixels ~ 0

Calibration + E2E test: PUMA + Panter test facilities (MPE)

2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, N. Meidinger, 13 May 2025

eROSITA telescope array assembled at MPE

Size: 1.9 m Ø x 3.5 m Mass: 808 kg Power: 522 W (max.) Data rate: 400 MB/day (average) 600 MB/day (max.)

Launch on 13 July 2019 (12:31 UTC)

in space: eROSITA fully functional - similar performance as measured on ground

eROSITA (extended ROentgen Survey with an Imaging Telescope Array)

eROSITA wide-field (1°) X-ray telescope developed under MPE's leadership:

- 7 Wolter-1 mirror modules (54 nested mirror shells) +
- 7 cameras with PN-CCD detectors incl. electronics + filter wheel

eROSITA onboard SRG → halo orbit around L2 Since Dec. 2019: SRG/eROSITA performed **all-sky survey**:

whole celestial sphere is mapped once every 6 months Eight all-sky charts were planned until Dec. 2023.

26 February 2022: eROSITA in **safe mode** for political reasons (cooperation with Russia suspended)

eROSITA data release by German eROSTIA consortium (31 Jan. 2024): eRASS1 catalogue: 170 million X-ray photons

• observations 12 Dec. 2019 - 11 June 2020

 >900 000 sources, including ~710.000 AGNs 180 000 X-ray emitting stars in our Milky Way, 12 000 clusters of galaxies, plus binary stars, supernova remnants, pulsars

Photons colour-coded according to energy (red 0.3-0.6 keV, green 0.6-1 keV, blue 1-2.3 keV).

Einstein Probe

cnes

 PN-CCD detectors of eROSITA type in operation on Chinese-European
 X-ray mission Einstein Probe "A New Horizon in Detecting Cosmic

> X-ray Transients" launched on January 9, 2024

Einstein Probe

Exploring the dynamic X-ray Universe

MP

WXT: lobster-eye-based wide-field telescope:
12 MPO (3800 square degrees) + 48 CMOS detectors
FXT: 2 telescopes (eROSITA optics (FoV=1°) + PN-CCD detector)

eesa

Dedicated PN-CCD wafers for EP project by HLL (R. Richter et al.)

MPE

cnes

eesa

FXT "First Light" observation: Puppis A SNR (Credit: Weimin Yuan)

Status end of 2024:

- >70 transient events detected
- thousands of candidates
- > 500 stellar flares
- > 100 alerts sent to international community, guiding follow-up observations from ground based and space instruments

SVOM MXT

SVOM: Chinese-French mission dedicated to **gamma-ray bursts**

French MXT (Microchannel X-ray Telescope) instrument **prototype of eROSITA PN-CCD:** 256x256 pixels (75x75µm²)

• MPE provided PN-CCDs, CAMEX readout ASICs, know-how for assembly and operation of detector.

Launch on **22 June 2024** from the Xichang MXT successfully commissioned + in operation SVOM has detected **113** gamma-ray bursts until May 1st 2025

eXTP satellite mission

enhanced X-ray Timing and Polarimetry

- eXTP SFA planned to be equipped with six 19-cell SDD detectors
- Request in Dec. 2024 for PN-CCD detector of EP-FXT type: imaging + spectroscopy
- eXTP satellite launch: January 2030

SPICE (Small Pixel CCD Experiment)

Paul Nandra motivated CCD technology development for

Future X-ray missions with high-angular resolution X-ray mirrors (~arcsec)

Detector requirements :

- smaller pixels
- larger pixel arrays
- high time resolution
- low heat dissipation \rightarrow sensor temperature (~ -80°C) on S/C

SPICE focal plane with **4 Mpixel**

Architecture: 4 quadrants with 1024x1024 pixels for IM

→ 4096 readout channels (heat dissipation!)

pixel size: 36 x $36\mu m^2 \rightarrow signal charge$ spread over up to 3x3 pixelscentroiding $\rightarrow subpixel resolution$

Time resolution ≥ 30ms

higher time resolution by window or timing mode

Readout ASIC: CAMEX

SPICE detector development in progress:

- HLL: CCD sensor layout & fabrication
- MPE: Requirements (science)

Detector board incl. mech.-thermal design suitable for flight; Thermal vacuum chamber Lab electronics (→ flight electronics)

Data analysis 2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, N. Meidinger, 13 May 2025

SPICE PN-CCD Detector

FoV(4MPixel) ≈ 7.6 x 7.6 cm² → Very innovative design developed for SPICE

Thank you

2nd Workshop on Silicon Sensors for Radiation Detection and Quantum Applications, N. Meidinger, 13 May 2025