Concepts for Experiments at Future Colliders I

PD Dr. Oliver Kortner

27.01.2025

Role of muons at hadron colliders

• Muons are the only charged primary collision products traversing the

- $\rightarrow\,$ Clean signature of muonic final states.
 - Example physics processes with muonic final states:
 - $H \to ZZ^* \to \mu \mu \ell \ell$,
 - $A \rightarrow \mu \mu$,
 - $Z' \rightarrow \mu \mu$.

Good muon identification and reconstruction is crucial for physics at

Need for efficient muon detection and identification over wide momentum range!

Muon identification tasks Inclusive muon cross sections

Muon identification tasks

- Identification of "prompt" muons from c, b, t, W, and Z/γ decays.
- Rejection of muon from π/K decays, shower muons, and hadronic punch-through.

Muon identification strategy

Muon identification concept	;	
Goal	Solution	
Minimization of	Muon system surrounding	
hadronic punch-through	the calorimeters	
Suppression of muons	p_t measurement in the	
from π/K decays in flight	muon system with $rac{\Delta p_t}{p_t} \lesssim 10\%$	
	+ requirement of a well	
	matching inner-detector track	
Suppression of shower	As $\pi/K \rightarrow \mu$ + requirement of	
muons	a small energy deposit in the	
	calorimeters	

The ATLAS and CMS Muon Systems

Limiting factors of the muon systems

Energy loss in the calorimeters:

- Energy loss ${\sim}3$ GeV with ${\lesssim}20\%$ fluctuation.
- Larger fluctuations can be measured by the calorimeters
- \rightarrow Neglible influence on $\frac{\Delta p_t}{p_t}$ for $p_t \gtrsim 10$ GeV/c.

Multiple scattering (MS) in the calorimeters:

• Negligible for ATLAS: $\frac{\Delta p_t}{p_t}|_{MS} \sim 10^{-3}$.

Multiple scattering and bending power in the muon system:

•
$$\frac{\Delta p_t}{p_t} \propto \frac{\sqrt{\text{material in the muon system } [X_0]}}{\int B \, dl}$$

Resolution of the muon chambers:

- Spatial resolution σ of the muon chambers is the limiting factor for $\frac{\Delta p_t}{p_t}$ for high $p_t \sim 1$ TeV/c.
- $\frac{\Delta p_t}{p_t} \propto \sigma$ for $p_t \sim 1$ TeV/c.

The ATLAS and CMS Muon Systems

Two concepts for the muon system

ATLAS

- Focus on stand-alone muon reconstruction.
- $\rightarrow \mbox{ Air-core toroid } \rightarrow \mbox{ minimization of } \label{eq:air-core}$ multiple scattering.

- Focus on high $\int B \, dl$ in the inner detector and compactness.
- Instrumented return yoke of the solenoid to achieve high bending power.

Magnets

- No limitation of $\frac{\Delta p_t}{p_t}$ by MS.
- Accurate B-field measurement possible.
- Uniform $\frac{\Delta p_t}{p_t}$ independent of η .

Iron Return Yoke of CMS Solenoid

- Uniform B field in the barrel.
- High bending power.
- Limitation of $\frac{\Delta p_t}{n_t}$ by MS.
- η dependent $\frac{\Delta p_t}{p_t}$.

Barrel: $\approx 5\times$ higher bending power in CMS,

- but $\approx 14 \times$ larger multiple scattering.
- $\rightarrow \approx 3 \times$ worse p_t resolution in CMS.

Endcap: similar bending powers, $\approx 10\times \text{ large multiple} \\ \text{scattering.}$

 $\rightarrow \approx 5 \times$ worse p_t resolution in CMS.

Combined transverse momentum resolution

Better resolution with muon systems and inner trackers

Retter inner tracker resolution in CMS mainly due to higher B field

Advantages of a toroidal field

Ideal toroid

Ampère's law :

$$\oint_{\Gamma} \vec{B} \cdot d\vec{s} = B \cdot r \cdot \alpha = \mu_0 j \cdot R_i \cdot \alpha.$$
$$\Leftrightarrow B(r) = \frac{\mu_0 j R_i}{r} =: B_i \frac{R_i}{r}.$$

Advantages of a toroidal field

Field integral in a toroidal field

• Simplification: straight path for high p. \rightarrow Trajectory

$$\vec{x}_{\mu} = \begin{pmatrix} x_0 \\ z_0 + r \tan \theta \\ r \end{pmatrix}.$$
$$d\vec{x}_{\mu} = \frac{d\vec{x}_{\mu}}{dr} \cdot dr = \begin{pmatrix} 0 \\ \tan \theta \\ 1 \end{pmatrix}.$$

$$|\vec{B} \times d\vec{x}_{\mu}| = \sqrt{1 + \tan^2 \theta} B(r) \, dr.$$

$$\int_{\mathcal{P}} B \, dl = \sqrt{1 + \tan^2 \theta} \int_{R_i}^{R_o} B_i \frac{R_i}{r} \, dr = \sqrt{1 + \tan^2 \theta} B_i R_i \ln \frac{R_o}{R_i}.$$

$$p = \sqrt{p_{\parallel}^2 + p_T^2} = p_T \sqrt{1 + \left(\frac{p_{\parallel}}{pT}\right)^2} = p_T \sqrt{1 + \tan^2 \theta}.$$

$$\Rightarrow p_T \text{ resolution independent of } \theta \ (\eta)!$$

Reference detector for the CDR

- 4 T 10 m solenoid + solenoids in the forward regions.
- Silicon semiconductor inner tracker.
- Liquid argon calorimeter.
- One muon chamber layer. Momentum measurement for the trigger using the muon's direction of flight in the muon system.

Instrumentation of the muon system

Boundary conditions

- Instrumentation of a large area ($\sim 10000 \text{ m}^2$) with position sensitive detectors.
- Detector requirements:

Required accuracy: 50 μ m.

- Fast response in order to be able to associate the detected muons to the *pp* collision in which they were created.
- High spatial resolution in order to achieve the desired high momentum resolution.

FCC α Measured quantity: Deflection angle α . Required accuracy: 70 μ rad.

• The muon detectors must be capable of an environment with high background radiation of neutrons and γ s, which lead to count rates of up to $\sim 10 \text{ kHz/cm}^2$.

Gaseous ionization detectors

• Only gaseous ionization detectors allow for a cost effective instrumentation of muon systems.

Explanation of the functioning principle using cylindrical tubes, filled with gas, as example

Radial electric field inside the tube: $E(r) = \frac{U_0}{\ln \frac{R}{r_0}} \frac{1}{r}$. \Rightarrow High field strength in the vicinity of the anode wire.

Signal strength as a function of U_0

Ionization mechanism

Energy loss of charged particles by excitation and ionization of atoms. X: Atom/molekule. p: Charged particle.

Excitation: $X + p \rightarrow X^* + p$. The reaction of X^* with other atoms/molecules can lead to ionization.

Ionization: $X + p \rightarrow X^+ + p + e^-$. The created charges X^+ and e^- are called primary ionization.

Average number of created electron ion pairs

Typical value: 1 elcktron ion pair per 30 eV energy loss.

Recombination and electron attachment

In order to get a signal in a tube, as many primary electrons must reach the anode wire. Ions created in the avalanche at the anode wire should reach the cathode. Two processes can lead to a loss of charge:

Recombination: $X^+ + e^- \rightarrow X + h\nu$.

 $X^+ + Y^- \to XY + h\nu.$

Rekombination: $e^- + X \rightarrow X^- + h\nu$.

X: Atom with almost filled outer shell. \rightarrow Positive electron affinity.

Examples: O_2 , H_2O , CO_2 , CCI_4 , SF_6 .

Noble gases have full outer shells. So they have negative electron affinity and are used in gaseous ionization detectors.

Ionization and transport phenomena in gases

The motion of electrons and ions in the gas has two components: the thermal motion and the motion due to the presence of the electric field.

Thermal motion

No preferred direction.

0

$$v_{thermisch} = \sqrt{\frac{8k_BT}{\pi m}} \approx \begin{cases} 10^6 \text{ cm s}^{-1} \text{ for electrons} \\ 10^6 \text{ cm s}^{-1} \text{ for ions} \end{cases}$$

at room temperature.

 Mean free path of electrons and ions between two collisions with gas molecules:

$$\lambda = \frac{1}{\sqrt{2}} \frac{k_B T}{\sigma_0 p}.$$

Ionization and transport phenomena in gases

Motion under the influence of the electric field

t: Time passed since the last collision with a gas molecule.

 \vec{v}_0 : Velocity since the last collision.

Velocity at time t: $\vec{v}_0 + \frac{q}{m}\vec{E}ts$.

$$\langle \vec{v}_0 \rangle = 0.$$

 $\langle t \rangle =$ mean time between two collisions τ .
 $\Rightarrow \qquad \vec{u} = \frac{q\vec{E}}{m}\tau = \mu\vec{E}.$

 \vec{u} is called the drift velocity, μ the mobility.

For ions $u \ll v_{thermisch}$ such that $\tau = \frac{\lambda}{v_{thermal}}$, which leads to

$$\vec{u} = \frac{q}{4\sigma_0} \sqrt{\frac{\pi k_B T}{m}} \frac{E}{p}.$$

 μ_{ions} is therefore independent of \vec{E} and u_{ions} is proportional to $\frac{E}{p}$. For electrons $u \sim v_{thermal}$ because of $m_e \ll m_{ion}$, and $\mu = \mu(E)$. In the vicinity of the anode wire of a cylindrial tube, the electric field is to large that the primary electrons get accelerated to strongly to ionize gas atoms. An avalanche of electric charges is created.

- $\lambda:$ Mean free path of an electron up to the secondary ionization.
- $\alpha := \frac{1}{\lambda}$: Probability for the ionization per traversed path (so-called Townsend coefficient).
- n: Number of the electrons at point x.

Number of the electrons at point x + dx: $n + dn = n + n \cdot \alpha dx$, hence $\frac{dn}{dx} = n\alpha \Leftrightarrow n = n_0 \cdot \exp(\alpha x)$, where n_0 is the number of primary electrons. Gas gain: $G := \frac{n(wire)}{n_0}$.

Muon drift tube chambers

- MDT chambers with 30 mm and 15 mm tube diameter are used in the ATLAS muon spectrometer.
- MDT chambers with 15 mm diameter are part of the conceptual design of the muon system of the FCC-hh detector.
- Occupancy of these detectors at 10 kHz background count rate: 10 kHz cm⁻²·200 ns=0,2% cm⁻²=30% for 1 m tube length.

Resistive-Plate Chambers (RPCs)

- Constant electric field inside the gas volume.
- \Rightarrow Avalanche creation everywhere in the gas volume along the trajectory of the ionizing particle. Fast reponse (~ 1 ns. High temporal resolution: ~ 0.5 ns.
 - In order to prevent a short between the electrodes and to terminate the avalanche creation, electrodes with high resistivity are used.

- The charge particle detection efficiency of a detector under high particle background is given/determined by the size of its active "space-time" area, i.e. its spatial granularity and its dead time.
- Micropattern gaseous ionization detectors are fast gaseous ionization detectors with high spatial granularity for the operation in high background environments.
- Most prominent examples: GEMs, MicroMegas.

Gas Electron Multiplier (GEM)

The heart of a GEM is a thin, metal-clad polymer foil, chemically pierced by a high density of holes (typically 50 to 00 per mm². On application of a difference of potential between the two electrodes, electrons released by radiation in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.

Field lines and equipotentials in the GEM holes on application of a voltage between the two metal sides. A drift (top) and transfer field (bottom) transport ionization electrons into and out of the holes.

Close view of a GEM electrode, etched on a metal-clad, 50 μm thick polymer foil. The hole's diameter and distance are 70 μm and 140 $\mu m.$

Single and multiple GEMs

Schematics of a single GEM detector. Electrons released by ionization in the top gas volume drift and multiply in the holes; the charge is collected on the anode, with 1-D or 2-D projective strips, pads or other patterns.

A triple-GEM detector: gain sharing between the foils improves the reliability of operation at high gains.

- A MicroMegas can be considered as an RPC with an additional ionization and drift region.
- Advantage of the additional ionization region: higher primary charge than in an RPC.
- Disadvantage of the additional ionization region: A MicroMegas is slower than an RPC.

Time-Projection Chamber

• Time-projection chambers were developed in the 1980s to allow for charge particle detections with a very small amount of material along the track.

Leo 1993

- Modern TPCs use different detectors on the end caps, e.g. GEMs.
- Problem at the FCC-ee: Magnetic field must not exceed 2 T in order not to spoil the e[±] beams. This leads to a reduced spatial resolution.