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Recapitulation of the previous lecture

Role of muons at hadron colliders

o Muons are the only charged primary collision products traversing the

calorimeters.
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— Clean signature of muonic final states.
o Example physics processes with muonic final states:
o H— ZZ* — pull,

o A— pup,
o 7' — up.

o Good muon identification and reconstruction is crucial for physics at



Recapitulation of the previous lecture

Characteristic muon momentum spectra
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Recapitulation of the previous lecture

Muon identification tasks
Inclusive muon cross sections

ATLAS Muon TDR
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Recapitulation of the previous lecture

Muon identification strategy

Muon identification concept

Goal Solution

Minimization of Muon system surrounding
hadronic punch-through the calorimeters
Suppression of muons p; measurement in the

from 7/K decays in flight muon system with 22+ < 10%
-+ requirement of a well
matching inner-detector track

Suppression of shower As /K — p + requirement of

muons a small energy deposit in the
calorimeters




The ATLAS and CMS Muon Systems




Recapitulation of the previous lecture

Limiting factors of the muon systems

Energy loss in the calorimeters:
o Energy loss ~3 GeV with <20% fluctuation.
o Larger fluctuations can be measured by the calorimeters
— Neglible influence on % for p; 2 10 GeV/c.
Multiple scattering (MS) in the calorimeters:
o Negligible for ATLAS: 2[5 ~ 1075,
Multiple scattering and bending power in the muon system:

Ap; \/material in the muon system [Xo]
e X TBdl :
Resolution of the muon chambers:

Q

o Spatial resolution ¢ of the muon chambers is the limiting factor for Apt

for high p; ~ 1 TeV/c.
Apy

o S xo for p; ~ 1 TeV/c.



Recapitulation of the previous lecture

The ATLAS and CMS Muon Systems
Two concepts for the muon system

ATLAS CMS

return yoke

muon detectors  electromagnetic calorimeters
forward calorimeters
end-cap toroid

]

forward
calorimeter

P(7Te1) 24m

superconductig coil
(B=4T)

barre ner detector  hadron Cam”‘er iy hadron calorimeter
- e \
o Focus on stand-alone muon o Focus on high [ Bdl in the inner

reconstruction. detector and compactness.

— Air-core toroid — minimization of o Instrumented return yoke of the solenoid
multiple scattering. to achieve high bending power.



Recapitulation of the previous lecture

Magnets

ATLASMAir_—vCore Toroid Iron Return Yoke of CMS Solenoid
Sl r(m)

=

S

Uniform B field in the barrel.
High bending power.
Limitation of £2¢ by MS.

n dependent £2-.

o No limitation of 22+ by MS.

o Accurate B-field measurement
possible.

o Uniform 22+ independent of .

© 0 0 O



Recapitulation of the previous lecture

Comparison of the magnetic field integrals

E 4 SRS Barrel: ~ 5x higher bending power in
= [ CMS (inside the cail) ‘ CMS
= 12 oo 'N i
2 10! N\ ~ 14x larger multiple
— | 3}& ATLAS: scattering.
8 TLAS:
i /‘\ ;R‘&ﬁ ﬁ; 2/16 — ~ 3x worse p; resolution in
6 p=7/8
: /ﬁ/ﬁ \52{296/2// CMS.
4 3 o .
ke Endcap: similar bending powers,
2Ei \ / ~ 10x lar Itipl
\J v ~ ge multiple
0 P B N .5 scattering.

— & bX worse p; resolution in
CMS.
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Recapitulation of the previous lecture

Standalone transverse momentum resolution

ATLAS barrel standalone CMS barrel standalone
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Recapitulation of the previous lecture

Standalone transverse momentum resolution

ATLAS barrel standalone CMS barrel standalone
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Recapitulation of the previous lecture

Standalone transverse momentum resolution

ATLAS barrel standalone CMS barrel standalone
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Recapitulation of the previous lecture

Standalone transverse momentum resolution

ATLAS barrel standalone CMS barrel standalone
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Recapitulation of the previous lecture

Standalone transverse momentum resolution
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Recapitulation of the previous lecture

Standalone transverse momentum resolution
ATLAS barrel standalone CMS barrel standalone
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Recapitulation of the previous lecture

Standalone transverse momentum resolution
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Recapitulation of the previous lecture

Combined transverse momentum resolution
Better resolution with muon systems and inner trackers
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Advantages of a toroidal field

Ideal toroid
Ampere’s law : %é-déE’zB-r-a:uoj-Ri-a.
r
i R; R
@B()—MO] Z—IBiJ
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Advantages of a toroidal field

/“ Field integral in a toroidal field

o Simplification: straight path for high p.
— Trajectory

To
Ty=| z0+rtanf |.
r
- 0
di"u:dx—“-dr: tanf | .
0 P dr 1

|B x dit,| = V/1+ tan? 0B(r) dr.

R;

P pr R;
2
/ p Y
p=\/pj+pr=pr 1+<p|T> =prV1+ tan®9.
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Recapitulation of the previous lecture

Reference detector for the CDR

© 4 T 10 m solenoid + solenoids in the forward regions.

o Silicon semiconductor inner tracker.

o Liquid argon calorimeter.

o One muon chamber layer. Momentum measurement for the trigger
using the muon'’s direction of flight in the muon system.

21



Instrumentation of the muon system




Boundary conditions

o Instrumentation of a large area (~ 10000 m?) with position sensitive
detectors.
o Detector requirements:
e Fast response in order to be able to associate the detected muons
to the pp collision in which they were created.

e High spatial resolution in order to achieve the desired high
momentum resolution.

FCC
o
Measured quantity: Sagitta s. Measured quantity: Deflection angle a.
Required accuracy: 50 um. Required accuracy: 70 urad.

o The muon detectors must be capable of an environment with high
background radiation of neutrons and ~s, which lead to count rates of
up to ~ 10 kHz/cm?2.
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Gaseous ionization detectors

o Only gaseous ionization detectors allow for a cost effective
instrumentation of muon systems.

Explanation of the functioning principle using cylindrical tubes, filled with
gas, as example

Anodendraht (@=2r,) 4 Metallischer Zylindermantel (Kathode)

-:_
i H Signal in die
X T I Ausleseelek—
A \ tronik
' Koppel-

konden-
lonisierendes Teilchen _ sator
Positive Betriebsspannung U, . —
Mit Gas geftilltes P 9 o1
Rohr
Schutzwiderstande

Radial electric field inside the tube: E(r) = -4 1

In &
70
= High field strength in the vicinity of the ano(de wire.
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Signal strength as a function of U,
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Ionization and transport phenomena in gases

Ionization mechanism
Energy loss of charged particles by excitation and ionization of atoms.
X: Atom/molekule. p: Charged particle.
Excitation: X +p — X* 4+ p. The reaction of X* with other
atoms/molecules can lead to ionization.
Tonization: X +p — X 4+ p+e~. The created charges X and e~ are
called primary ionization.

Average number of created electron ion pairs
Typical value: 1 elcktron ion pair per 30 eV energy loss.
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Ionization and transport phenomena in gases

Recombination and electron attachment
In order to get a signal in a tube, as many primary electrons must reach
the anode wire. Ions created in the avalanche at the anode wire should
reach the cathode. Two processes can lead to a loss of charge:
Recombination: Xt +e~ — X + hv.
XT+Y — XY + hv.
Rekombination: e~ + X — X~ + hv.

X: Atom with almost filled outer shell. — Positive

electron affinity.

Examples: Og, HoO, CO,, CCly, SFg.
Noble gases have full outer shells. So they have negative electron affinity
and are used in gaseous ionization detectors.
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Ionization and transport phenomena in gases

The motion of electrons and ions in the gas has two components: the
thermal motion and the motion due to the presence of the electric field.

Thermal motion
o No preferred direction.

Q
; _ [8kpT _ [ 10° cms™! for electrons
thermisch = mm | 10% cms™! for ions
at room temperature.

o Mean free path of electrons and ions between two collisions with gas
molecules:

1 kpT
\/5 Uop'
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Ionization and transport phenomena in gases

Motion under the influence of the electric field

t: Time passed since the last collision with a gas molecule
vUp: Velocity since the last collision.

Velocity at time t: ¥y + %Ets.

<vy> = 0.
<t> mean time between two collisions 7.
. qE o
= U= q—T =uk.
m

4 is called the drift velocity, u the mobility.

For ions u < Vihermisch SUCh that 7 = va o which leads to
R q wkpT E
U= — —
409 m P

Wions IS therefore independent of E and Uions 1S Proportional to %
For electrons u ~ Vpermar Decause of me < mion, and pu = p(E).



Ionization and transport phenomena in gases

In the vicinity of the anode wire of a cylindrial tube, the electric field is
to large that the primary electrons get accelerated to strongly to ionize
gas atoms. An avalanche of electric charges is created.

A: Mean free path of an electron up to the secondary ionization.

o= %: Probability for the ionization per traversed path (so-called

Townsend coefficient).
n: Number of the electrons at point x.

Number of the electrons at point x 4+ dx: n+dn =n+n - adz, hence
?TZ =na < n = ng - exp(ax), where ng is the number of primary electrons.
n(wire)
() :

Gas gain: G =
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Muon drift tube chambers

drift tube
layers

Spatial resolution:
single tube: 80 pm
chamber: 35 pum

o MDT chambers with 30 mm and 15 mm tube diameter are used in
the ATLAS muon spectrometer.

o MDT chambers with 15 mm diameter are part of the conceptual
design of the muon system of the FCC-hh detector.

o Occupancy of these detectors at 10 kHz background count rate:
10 kHzcm=2-200 ns=0,2% cm~—2=30% for 1 m tube length.
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Resistive-Plate Chambers (RPCs)

Induced positive \ !
— signal on X strip \\.JL

ke
%

Low density filler 3 mm I

J_ | \l Graphite layer — 3Reslsﬂve electrode 2 mm
= l Frame lm h' '=||=spacer=’l=1 Gas 2 mm ¢
| E—

HV contacty, L

signal on Y strip —

. . 7% Induced negative
Insulating foil { Copper ground plane
¥
i

o Constant electric field inside the gas volume.

= Avalanche creation everywhere in the gas volume along the trajectory
of the ionizing particle. Fast reponse (~ 1 ns. High temporal
resolution: ~ 0.5 ns.

o In order to prevent a short between the electrodes and to terminate
the avalanche creation, electrodes with high resistivity are used.
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Micropattern gaseous ionization detectors

o The charge particle detection efficiency of a detector under high
particle background is given/determined by the size of its active
'""space-time" area, i.e. its spatial granularity and its dead time.

o Micropattern gaseous ionization detectors are fast gaseous ionization
detectors with high spatial granularity for the operation in high
background environments.

o Most prominent examples: GEMs, MicroMegas.

g3



Gas Electron Multiplier (GEM)

o The heart of a GEM is a thin, metal-clad polymer foil, chemically
pierced by a high density of holes (typically 50 to 00 per mm?2,
On application of a difference of potential between the two electrodes,
electrons released by radiation in the gas on one side of the structure
drift into the holes, multiply and transfer to a collection region.

Ei?Id lines anlq eguipo?entialli in tft;etGEM th Close view of a GEM electrode, etched on a
oles on application or a voltage between the o151 clad, 50 um thick polymer foil. The
two metal sides. A drift (top) and transfer hole’s diameter and distance are 70 um and

field (bottom) transport ionization electrons 140 pm

into and out of the holes.
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Single and multiple GEMSs

Schematics of a single GEM detector.
Electrons released by ionization in the top

gas volume drift and multiply in the A triple-GEM d_etgctor: gain sharl_ng -

. . between the foils improves the reliability
holes; the charge is collected on the of operation at high gains
anode, with 1-D or 2-D projective strips, P ghg '

pads or other patterns.

DRIFT I
Ep DRIET

GEM 4 S ESEsREeEERESE
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GEM 2 EoESECOCRERRER
Et2 TRANSFER 2

GEM 2 RO EDRDRRDES
Ey INDUCTION

READOUT

M-COORDIMATE
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o A MicroMegas can be considered as

| Drift Electrode A R . . . .
A 1. N 0y, an RPC with an additional ionization
5"‘"‘; Conversion/Drift Gap ' ’ \\‘ E Field and drift region.
- — YL Meomeh o Advantage of the additional ionization
128 pm ; - e

EELOVA region: higher primary charge than in
an RPC.

o Disadvantage of the additional
ionization region: A MicroMegas is
slower than an RPC.
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Time-Projection Chamber

o Time-projection chambers were developed in the 1980s to allow for
charge particle detections with a very small amount of material along
the track.

Leo 1993
Para\\e)“c field

ne
L Magnte—

clectric Field

1
Drifting',
Endcap e\ec\rons\\

Wire Chambers

High Voltage Plane

S~ Cathode "Pads”

Anode
Sense Wires Fig. 6.17. Schematic diagram of a time projection
chamber

o Modern TPCs use different detectors on the end caps, e.g. GEMs.

o Problem at the FCC-ee: Magnetic field must not exceed 2 T in order
not to spoil the e* beams. This leads to a reduced spatial resolution.
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