0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Development of a straw-tube chamber prototype for the inner detector of a future e^+e^- collider experiment

Julia Okfen

ATLAS Muon Group (Max Planck Institute for Physics)

DPG Frühjahrstagung – Göttingen (04.04.2025)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Recoil Mass (GeV/c

 \rightarrow model independent measurement (no decay products of H)

Future Circular e^+e^- Collider - FCCee

Beam energy known down to $0.1\% \rightarrow$ want to achieve same resolution for Z

measurement
$$\rightarrow \frac{\sigma(p_T)}{p_T} \sim 0.1\%$$
 for $p_T = 50$ GeV

Planned after HL-LHC with a circumference of 91,2 km

Higgs Factory:

- $\sqrt{s} = 240 \, \text{GeV}$
- Higgs radiation drives requirements for the inner detector
- Precision measurement of the total width of Higgs
 - Know initial state with good accuracy and final state consists of two bodies \checkmark
 - Measure momentum of Z \rightarrow Calculate recoil mass of H \rightarrow total width of H

2

Setup & requirements for the inner detector

https://indico.cern.ch/event/1408681/contributions/6107963/attachments/2 946580/5178215/MPP straw dev.pd

	Advantages	Disadvantages
Silicon detectors	Excellent position resolution (5 μ m)	Material budget \rightarrow MS
Gaseous detectors	Low material budget Particle identification (often w. He)	Position resolution limited (100 μ m)

43/attachments/39282/61939/FCC-ee-Detectors-20240115.pdf

Silicon wrapper B = 2T2m Gaseous detector section 1.0 0.5 Silicon vertex detector 0.5 1.0 15 2.0 3.8

Ш

Silicon + gaseous detector

Contributions to momentum resolution: position resolution multiple scattering (MS)

Inner detector – gaseous volume

Drift chamber:

Gaseous volume equipped with ~ 350.000 wires

Straw tubes

- Drift tube with wall thickness of $\sim \mu m$

Advantages of a Straw Tube Chamber

- $\checkmark\,$ Each tube is an individual detector unit
 - A single broken wire affects only the corresponding tube, but not whole tracker
- $\checkmark\,$ Possibility to use different gases in different tubes

Gaseous detector	Drift chamber	Straw tube
Material budget	$2.6 \cdot 10^{-5} X_0$	$9 \cdot 10^{-5} X_0$

• The radiation length per layer is comparable for both gaseous options

Comparison of the momentum resolution

- All silicon detector: hard to achieve a resolution < 0.3%
- Momentum resolution of both gaseous options comparable

Small muon drift tubes (sMDT)

- Based on sMDTs, we are developing a straw tube prototype
- MPP developed sMDTs for the ATLAS Muon Upgrade

sMDT parameters

Wall thickness: 0.4 mm
Tube radius: 7.1 mm
Wire radius: 50 μm
Spatial resolution: ~ 100 μm
Operating gas: Ar/CO2 (93/7)
Operating voltage: 2730 V
Operating pressure: 3 bar

Mechanical precision of whole chamber $10~\mu{\rm m}$

ttps://wwwatlas.mpp.mpg.de/ftp/outgoing/sMDT/BIS/MuonPhase2IDR/sMDT/sMDTIDR/sMDT_0.pd

Straw Tube prototype

Straw parameters

Walls made of thin mylar double coated with Al

Thickness:	$\sim \mu m$
Tube radius:	7.1 mm
Wire radius:	$50\mu m$
Operating gas:	He/iC4H10 (90/10)
Operating voltage:	1624 V
Operating pressure:	1050 mbar

- Producing 48 Straw Tubes of 1.45m length (+ 7 spares) → 2 layers with 6 x 4 Straws
- Need of a support structure bc. of flexible tube wall

Julia Okfen (MPP)

Julia Okfen (MPP)

Straw Tube prototype - endplug

- Reuse electronics and gas supply system from ATLAS sMDTs
- The endplugs needed to be adapted for the purpose of gluing instead of crimping
- Goal: gas tightness and electric contact

 Three-part clamp to prevent creases in the straw wall

• O – rings surrounding the glueing

- Glueing channel beneath the surface of the endplug
 - Inner ring: mechanically good glue
 - Outer ring: electrically conducting glue

8

Straw Tube	nroduction.	- tests		
	production	ισοιο		
				(COL

Tests conducted	Results
Gas leakage test	
<u>Operating conditions</u> Ar/CO2 (93/7) at a pressure of p = 1100 mbar	No leaks detected by sniffing Argon
Resistivity Measurement with digital voltmeter to check if the electrical glueing was successful	
Dark current Operating conditions Ar/CO2 (93/7) at a pressure of p = 1100 mbar	Goal: current below 2 nA Result: tested up to 2.73 kV which corresponds to a gas gain of 380.000.000 → within the limit

Helium-isobutane studies

As already anticipated, we want to use Helium to fill the Straw tubes

- First experimental cosmic ray tests can already be conducted without the straw tube chamber by using a sMDT chamber of ATLAS (2 multilayer with 58x4)
- Conduct simulations with Garfield ++
 - interpreting experimental measurements and for electronic development

Importance:

- Gain experience with the gas mixture He/iC4H10 (90/10)
- Tune the simulation program Garfield ++ due to weaknesses:
 - Simulate ionization process (number of primary electrons)
 - Predict the transport of electrons in Helium gas
 - \succ hard to have a reliable prediction of the gas gain

Diethorn parameter He/iC4H10 (90/10) $E_{min}(\varrho_0)$ 32.4 ± 2.98 cm Torr ΔV 26.01 + 0.53 Vhttps://doi.org/10.1016/S0168-9002(96)00581-5 11

- From experimental data analysis we receive an efficiency vs voltage curve
- Since the gas gain prediction of Garfield++ is limited, we set the gain as input parameter receive an efficiency vs (gas) gain curve
- For comparison and tuning we need to convert gain into voltage which is possible via the

Diethorn formula:

 $G = \left[\frac{E(r_{min})}{E_{min}(\varrho_0)\rho_{acc}}\right]^{\frac{r_{min}E(r_{min})\ln(2)}{\Delta V}}$ $E(r_{min})$ Q_{gas}

Electric field at wire pressure of used gas

Helium-isobutane studies – Diethorn formula

Observation:

It would be better to tune the conversion for good matching of experiment and simulation

٠ agreement is acceptable

Within the uncertainties of the simulation data the

Experimental efficiency curve (x):

- Set one multilayer to the operating voltage of 1624V
- Vary the voltage of the other multilayer
- Trigger on cosmic rays
- Require at least 4 hits in multilayer at operating voltage

Helium-isobutane studies – efficiency curve

Helium-isobutane studies – efficiency curve

Fit of the Diethorn formula within the uncertainties of the parameters fits the data well and provides a suiting conversion of Gain to Voltage for our experimental purposes

Helium-isobutane studies – rt relation

- rt relation of experimental (black) and simulation (red) data (same dataset of comic rays as before)
- Overall good agreement:
 - Maximum drift time of ~ 300 ns in both data sets
 - Drift velocity in experiment is slightly higher than predicted by the simulation

Helium-isobutane studies - resolution

 Spatial resolution of simulation better than in the experiment

- Difference in resolution results from:
 - The difference in drift velocity impacts the resolution which explains the difference partly
 - Study multiple scattering correction
 - Here it was taken from GEANT4
 - Long experimental run with lead absorber

Cosmic rays

																									2	
S	11	n	n °r	m	2	r	v/																			¢
0	ų	ø	0	0	ç	0	У																	(1)	[قر	c
																								1.400-1	· · ·	

Motivation of inner detector concept for FCCee:

- precision measurements of the Higgs boson → need of an excellent momentum resolution
- combine silicon and gaseous detectors
- advantageous to provide particle identification capabilities

Straw tubes as possible implementation

- Compatible with drift chamber
- Provides advantages such as being an independent detector unit

Producing a Straw tube chamber prototype at MPP

• Characterize complete prototype using the test beam in July at CERN

Tune Garfield++ \rightarrow get reliable simulation predictions for our purposes

																						TITA	\mathbf{i}	
																					E		\circ	
																							0	

Backup

Julia Okfen (MPP)

Gaseous Drift tube

- Detector Volume filled with gas (noble + quencher)
- Particle ionizes gas -
- Apply voltage
 - Depending on the strength, the chamber is operated in different modes e.g.:
 - Ionization chamber -
 - Proportional counter

			3
Momentum resc	lution		
			\$ /
			1

- The momentum resolution is composed of two components
 - 1. Position resolution

$$\frac{\sigma_{\rm p}}{\rm p} = \frac{2\rm p}{B\rm q} \frac{1}{L^2} \sqrt{\frac{5}{\rm N}} \sigma$$

2. Multiple scattering contribution

$$\frac{\sigma_{\rm p}}{\rm p} = \frac{13.6 \text{ MeV}}{\rm qcBL} \sqrt{\frac{\rm N d}{\rm X_0}}$$

Nomenclature

n

Q

B

Ν

σ

N d

 X_0

particle momentum charge of particle magnetic field length of the particle trajectory number of measurement layers average spatial resolution amount of detector material

Resolution contributions (CLD, IDEA, Allegro)

Concept	Material	Position resolution	Multiple scattering resolution	Momentum resolution
CLD	7.5 %	0.06 %	0.31%	0.32 %
IDEA	4 %	0.13%	0.23 %	0.26 %
Straws	4.5 %	0.13%	0.24 %	0.27 %

23

 Preliminary study of a straw tracker for gaseous volume

 100 straw layers with increasing tube diameters from 10 mm to 15 mm with increasing distance from the beamline

Simulation of the inner detector

		T
Straw/	Tube production - tests	
Oliavy	Tube production tests	
		1

Tests conducted	Results
Gas leakage test	
<u>Operating conditions</u> Ar/CO2 (93/7) at a pressure of p = 1100 mbar	No leaks detected by sniffing Argon
Resistivity Measurement with digital voltmeter to check if the electrical glueing was successful	\checkmark
Endplug leakage Operating conditions Air at Atmospheric pressure	Goal: current below 100 pA Result: tested until 2.8 kV → within the limit
Dark current Operating conditions Ar/CO2 (93/7) at a pressure of p = 1100 mbar	Goal: current below 2 nA Result: tested up to 2.73 kV which corresponds to a gas gain of 380.000.000 → within the limit

For example:

- Write out voltage at a specific efficiency (exp data)
- Check what the gain value of this efficiency corresponds to in the simulation

- Beside a good momentum measurement, one wants to perform particle identification
- Standard procedure via calculating energy loss vs momentum

- Problem: energy loss follows a landau distribution
 - Caused by delta electrons (highly energetic, rare)
 - Impression of increased energy loss
 - Misinterpretation for particle identification

- Counting ionizations (= peak) along the track
- Delta electrons minor influence \rightarrow Poisson distribution
- Particle separation capabilities enhanced by a factor of 2
- BUT: the standard gas mixture Ar/CO2 won't work
- Ionization energy Argon: 15,8 eV
- USE: He/iC4H10
- Ionization energy Helium: 24,6 eV
- Less ionization clusters
- More separation in time

