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It is a very special particle!
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τh = 1/ΛQCD = 10-24 s → Cannot form bound states

τsd = m/ΛQCD
2 = 10-21 s → Spin correlations carried by decay

products (Quantum Entanglement)
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Top-Yukawa coupling Yt = mt√2/v ≈ 1

→ Impact on the mass of the Higgs boson and on the
stability of the electroweak vacuum

Salam, Wang, 
Zanderighi, 2023

m = 173.3 GeV

Γ = 1.42 GeV

τ = 5×10-25 s

q/e = ⅔

s = ½

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia, 2012
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Heavy BSM particles can decay into 𝑡 ҧ𝑡.
Rare processes (such as 𝑡 ҧ𝑡𝑡 ҧ𝑡 production) more sensitive to these effects.

m = 173.3 GeV

Γ = 1.42 GeV

τ = 5×10-25 s

q/e = ⅔

s = ½
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Snowmass 2021

The production of four top quarks in proton-proton collisions is one of the 
rarest processes of the Standard Model.
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The production of four top quarks in proton-proton collisions is one of the 
rarest processes of the Standard Model.

Observed for the first time in 2023 at the LHC.
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HL-LHC → reduction of experimental
uncertainties.

Accuracy of theoretical predictions must 
improve as well.

Consistent with Standard Model predictions:

• ATLAS: 1.8, 1.7 standard deviations;

• CMS: 1.3, 1.1 standard deviations;
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State-of-the-art 𝑡 ҧ𝑡𝑡 ҧ𝑡 theory

Modello Standard

• First calculations of NLO QCD corrections in [Bevilacqua, Worek ’12]

• Matched with parton shower and studied in aMC@NLO [Alwall et al. ’14][Maltoni, Pagani, Tsinikos ’15]

• Full set of EW corrections added in [Frederix, Pagani, Zaro ’17]

• Spin correlations in LO top quark decays within the framework of Powheg Box [Jezo, Krauss ’21]

• Effect of soft-gluon corrections at NLO+NLL’ in the absolute-mass threshold formalism studied for the 
first time in [van Beekveld, Kulesza, Moreno Valero ’22]

• Spin correlations in NLO top quark decays using NWA [Bevilacqua, Worek ’24]
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• Spin correlations in NLO top quark decays using NWA [Bevilacqua, Worek ’24]

• Effect of soft-gluon corrections at NLO+NLL’ in the invariant-mass threshold formalism [presented today]
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Cross section in hadron-hadron collisions

17



Cross section in hadron-hadron collisions

17



Partonic cross section
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Partonic cross section

NLO: real corrections

NLO: virtual corrections

Cancellation of IR divergences between reals and virtuals
(KLN theorem). Consider 𝑑𝜎/𝑑𝑄. Terms proportional to

survive, where

They provide important contributions to the cross 
section in the limit .
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more precise 
the calculation:

… and the more 
complicated the 

calculation

Estimate of missing
higher order terms
(theoretical uncertainty)

When feasible, 
calculation of 

NNLO, N3LO, etc…

When not feasible, 
use approximations 

(e.g. soft gluon 
resummation)

Partonic cross section

Example:
J.S. Hoff, 2015
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Partonic cross section
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Phys.Rev.Lett. 114 (2015) 212001
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Modello Standard

Jet functions:

What about the individual objects?

𝑔1 LL, 𝑔2 NLL, 𝑔3 NNLL 
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Modello Standard

NLL’ accuracy

𝐻(1) includes one-loop virtual corrections and 
accounts for 𝑂(𝛼𝑠) log𝑁-independent contributions
not captured by the NLL jet functions.

Improves NLL with NLO hard and soft functions.
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Modello Standard

NLL’ accuracy

Improves NLL with NLO hard and soft functions.

Matching to NLO: NLO+NLL’

NLO obtained with MG5_aMC@NLO (JHEP 07 (2014) 079 - JHEP 07 (2018) 185)

𝐻(1) includes one-loop virtual corrections and 
accounts for 𝑂(𝛼𝑠) log𝑁-independent contributions
not captured by the NLL jet functions.
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Additional details

Choice of threshold variable

• Absolute-mass threshold resummation ො𝜌 = (4𝑚𝑡)
2/𝑠 (Phys. Rev. Lett. 131 (2023) 211901)

• soft-gluon corrections to 𝜎 from region where final state produced almost at rest.

• Invariant-mass threshold resummation ො𝜌 = 𝑄2/𝑠 (this work)

• soft-gluon corrections to 𝜎 for all the invariant-mass configurations of final state.

• effect of soft gluon corrections on the invariant-mass distribution of final state.
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Additional details

Color decomposition of amplitudes

Soft radiation sensitive to overall color structure of hard process

⟹ 𝐻 and 𝑆 are matrices in colour space:

• 𝑞ത𝑞 channel: 6-dimensional colour space

• 𝑔𝑔 channel: 14-dimensional colour space

Color decomposed amplitudes extracted from custom version of OpenLoops (Eur. Phys. J. C 79 (2019) 866)
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Additional details

Diagonalization soft anomalous dimension

Diagonalization necessary to get rid of path-ordering operator.

It needs to be performed for every phase-space point in IMT.
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PDF: LUXqed_plus_PDF4LHC15_nnlo_100

LHC centre-of-mass energy: 13.6 TeV

Scale choice: 𝜇𝑅 = 𝜇𝐹 = 𝜇0, with 𝜇0 = 𝑄/2,𝑀/2,𝐻𝑇/2

Accuracy: NLO+NLL’ (NLO = NLO QCD+EW)

Modello Standard

Default setup
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Change in shape substantial

Invariant-mass distribution
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Scale uncertainty substantially reduced

NLL’ corrections start off positive, change
sign and then increasingly negative
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Scale uncertainty substantially reduced

NLL’ corrections vary in range [1%,8%]

Smaller shape modification

Invariant-mass distribution
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Invariant-mass distribution
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Invariant-mass distribution

NLO+NLL’:

• displays better convergence

• lower overall scale uncertainty

• central values differ at most 3%

NLO:

• central values differ up to 36 %
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Total cross section
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Modello Standard

Total cross section

𝜇0 = 𝑄/2:

• 1.8 𝜎 from CMS

• 2.2 𝜎 from ATLAS

𝜇0 = 𝑀/2:

• 1.5 𝜎 from CMS

• 2.0 𝜎 from ATLAS

+29.3%

-24.4%
+24.9%

-22.6%
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results have been combined with NLL’  (NLO+NLL’), and thus include all-
order corrections in the soft gluon emission limit.
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convergence of the predictions.

For the first time, soft-gluon corrections to the invariant mass distribution
Q of the 𝑡 ҧ𝑡𝑡 ҧ𝑡 system have been obtained.

The new theoretical predictions are in agreement with the experimental
results. However, both the theoretical uncertainty and the experimental error

are still quite large. With HL-LHC, further effort from theory side is needed.

Next step: performing the calculation at NLO+NNLL accuracy.
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BACKUP SLIDES



Modello Standard

Approximate NLO

• 𝑁𝐿𝐿′ expanded reproduces 𝑁𝐿𝑂𝑛𝑜 𝑞𝑔 reliably, both at the 

differential and integrated level.
• 𝑞𝑔 contribution to the cross section is very small.
• Differences between 𝑁𝐿𝐿′ȁ𝑁𝐿𝑂 and 𝑁𝐿𝑂𝑛𝑜 𝑞𝑔 do not 

exceed 3%.
• Differences between 𝑁𝐿𝐿′ȁ𝑁𝐿𝑂 and 𝑁𝐿𝑂 are at most 6%.
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