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Topics of the lecture in the summer semester

1. Fundamentals of electronic readout of particle detectors.

2. Fundamentals of statistical treatment of experimental data.

3. Reconstruction of pp collision events.

4. Trigger concepts for experiments at hadron colliders.
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Fundamentals of electronic readout of
particle detectors



Introductory example: cylindrical drift tube

I(t)
U0

Single charge q

Derivation of the Shockley-Ramo theorem

Theorem about the current induced on an electrode by a moving
charge q.
Derivation using an electrostatic approximation, i.e. neglecting the
magnetic field created by the moving charge.
If we know the electric field of the configuration depicted above, we
can compute the charge density on the electrode and how it changes
when the charge q is moving.
As shown by Shockley and Ramo one does not need to know the
exact form of this field, but just some of its properties.
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Shockley-Ramo theorem for a cylindrical drift tube

rotE⃗ = 0, hence E⃗ = ∇ϕ.

∇ · E⃗ = −∆ϕ =
ρ

ϵ0
.

Electrodes are conductors ⇒ ϕ=const on the surfaces of the electrodes.

Configuration 1: q = 0

Electric field Eq=0, potential ϕq=0.
ϕ0|anode wire = U0, ϕ0|tube wall = 0.
−∆ϕ0 = 0 between the electrodes, i.e. within the gas volume.

Configuration 2: q ̸= 0, all electrodes grounded

ϕq |anode wire = 0, ϕq |tube wall = 0.
−∆ϕq = q

ϵ0
δ(x⃗ − x⃗q).

Configuration 3: q ̸= 0, ϕ|anode wire = U0, ϕ|tube wall = 0

ϕ = ϕ0 + ϕq .
−∆ϕ = q

ϵ0
δ(x⃗ − x⃗q) with q ̸= 0, ϕ|anode wire = U0
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Shockley-Ramo theorem for a cylindrical drift tube

Green’s second identity

∫
V

(
ϕ0∇2ϕq − ϕq∇2ϕ0

)
dV =

∫
∂V

(ϕ0∇ϕq − ϕq∇ϕ0) · dS⃗ .

Choice of V
Volumne between the electrodes without a small ball Bϵ(x⃗q) around q.

Consequences

ϕ0, ϕq = 0 in V ⇒
∫
V

(
ϕ0∇2ϕq − ϕq∇2ϕ0

)
dV = 0.∫

∂V

(...) · dS⃗ =
∫

wire

+
∫

wall

+
∫

∂Bϵ(x⃗q )

(...) · dS⃗ .

0 = U0

∫
wire

∇ϕq · dS⃗ + ϕ(x⃗q)
∫

∂Bϵ(x⃗q )

∇ϕq · dS⃗ + ϕq(∂Bϵ(x⃗q))
∫

∂Bϵ(x⃗q )

∇ϕ0 · dS⃗ .

Hence with ⃗E0/q = −∇ϕ0/q we get U0Qwire = −qϕ0(x⃗q).

Iwire =
dQwire

dt
= −q

1

U0
∇ϕ0(x⃗q) ·

dx⃗q
dt

.
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Shockley-Ramo theorem for a cylindrical drift tube

Theorem
The induced current I by a given electrode due to the movement of a
charge q equals

I = Evqv

where v is the instantaneous velocity of the charge and Ev is the
component in the direction v of that electric field which would exist at the
charge’s position under the following circumstances: charge removed,
given electrode raised to unite potential, all other electrodes grounded.

Consequences

Avalanche electrons give a large, but very short current because of
their small drift distance to the anode wire.
Ions give currents over a longer time interval. As they are created
close to the anode wire, I is initally large and becomes smaller with
the drift towards the tube wall.

7 7



Introductory example: cylindrical drift tube
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Particle detectors provide current
or voltage pulses, which contain
information about particle
passage or deposited energy.

To obtain this information, they
must be processed electronically.
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Analog and digital signals

Analog signal: Information contained in the continuous variation of
electrical signal properties, e.g., pulse height, pulse duration, or pulse
shape.

Digital signal: Information stored in discrete form.

Example. TTL (Transistor-Transistor Logic):
Logical 0: Signal between 0 and 0.8 V.
Logical 1: Signal between 2 V and 5 V.

Advantage of a digital signal: No information loss with small signal
disturbances.
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Characteristics of a signal pulse

Slow Signal: tA ≳100 ns.

Fast Signal: tA ≲1 ns.
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Deformed rectangular pulse
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Fourier decomposition of a signal

Temporal evolution of a signal: s(t).
Fourier transform: ŝ(ω).

Example of an ideal rectangular pulse

s(t) =

{
A for t ∈ [−T

2 ,
T
2 ],

0 otherwise.

ŝ(ω) =
1√
2π

∞∫
−∞

s(t)e−iωtdt =
1√
2π

T/2∫
−T/2

A · e−iωtdt

=
A√
2π

−i

ω
e−iωT

∣∣∣T/2
−T/2 =

AT√
2π

sin
(
ωT
2

)
ωT/2

.
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Attenuation and bandwidth

Attenuation

Eingangs−

signal s
E

Ausgangs−

signal s
A

Elektronik Attenuation [dB]:=10· log10
(
|ŝA|2
|ŝE |2

)
.

−3 dB = 10 · log10
(
|ŝA|2

|ŝE |2

)
⇔ |ŝA|2

|ŝE |2
= 10−

3
10 =

1

2
.

Bandwidth
|s |²

A
^

|s |²
E

^

A/2

A

ω

Bandbreite

untere

Grenzfrequenz

obere

Grenzfrequenz
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Passive electronic components – Ohmic resistance

Drude’s model of electrical conduction in metals
Metals are electrical conductors. In an ideal conductor, the conduction
electrons experience no resistance. In a real conductor, they collide with
the atomic nuclei.

Assumptions

Neglect of interaction between the conduction electrons.
Free electron motion between collisions with atomic nuclei.

Non-accelerated motion in between collisions.

Elastic collisions between conduction electrons and atomic nuclei.
The conduction electrons are not heated by the collisions.
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Electron movement in the Drude model

Equation of motion of a conduction electron:

me ·
dv⃗

dt
= −eE⃗ .

τ : Average time between two collisions off atoms.

< v⃗ >= − e

me
E⃗ · τ + < v⃗0 >︸ ︷︷ ︸

=0 (in therm. equ.)

= − e

me
τ · E⃗ .

n: Conduction electron density.
L: Length of the real conductor.
A: Cross section of the real conductor.

A

L

vdt

dQ

dQ = −n · e |⃗v | · dt ·A ⇔ I =
dQ

dt
= −nev ·A =

ne2τ

me
·A · E .

Hence

j⃗ =
ne2τ

me
· E⃗ =: σ · E⃗ .

σ: electric conductivity.
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Ohm’s law

Voltage between the ends of the conductor:

U = L · E︸︷︷︸
= I

σ·A

=
L

σ ·A
· I =: R · I (Ohm′s Law).

Ohmic resistance

R =
L

σ ·A
=: ρ · L

A
.

ρ: specific resistance (unit: Ωcm).

Schematic symbols for an ohmic resistance:

(USA)

(DIN)
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Passive electronic components – capacitance

C =
Q

U
⇒ No current flow at DC voltage.

Current flow at AC voltage:

dU

dt
=

dQ
dt

C
=

I

C
.

Transition to frequency representation:

U (t) =
1√
2π

∞∫
−∞

Û (ω)e iωtdω, I (t) =
1√
2π

∞∫
−∞

Î (ω)e iωtdω.

dU

dt
=

1√
2π

∞∫
−∞

iωÛ (ω)e iωtdω =
I (t)

C
=

1√
2π

∞∫
−∞

1

C
Î (ω)e iωtdω,

leading to iωÛ (ω) = 1
C Î (ω), thus Û (ω) = 1

iωC Î (ω) .
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Capacitance – impedance and schematic symbol

Û (ω) = 1
iωC Î (ω).

Impedance: ZC = 1
iωC .

Schematic symbol:
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Passive electronic elements – inductance

Reminder: Field inside an ideal coil

B

Γ

l

dN
dl : Number of turns per unit length.
Ampére’s law:∮

Γ

B⃗ · ds⃗ = l · B = µ0 · I · dN
dl

· l .

B = µ0
dN

dl
· I =:

1

A
L · I .

A: Cross-sectional area of the coil.
L: Inductance.
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Ideal toroidal coil

a    b

B exists only inside the coil.

If the coil is made of an ideal conductor, E⃗ inside
the conductor is 0. Otherwise, an infinitely large
current would flow through the conductor.

⇒ Uab = 0.

With alternating current, because dI
dt ̸= 0, ∂B

∂t ̸= 0, resulting in a
non-zero electromotive force.

curl E⃗ = −∂B⃗

∂t
.

Uab =

∮
E⃗ · ds⃗ =

∫
A

curl E⃗dA⃗ = −
∫
A

∂B⃗

∂t
· dA⃗ = − ∂

∂t
B ·A = − ∂

∂t

1

A
LIA = −L

dI

dt
.

In the frequency domain, we have Û (ω) = −iωLÎ (ω) .
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Inductance – impedance and circuit symbol

Û (ω) = −iωLÎ (ω).
Impedance: ZL = −iωL.

Circuit Symbol:

(USA)

(DIN)

Remark. In the frequency domain, the behavior of a circuit containing the
mentioned passive elements can be calculated in a similar manner
to a circuit containing ohmic resistances, by using impedances.
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Signal transmission

Explanatory example: signal transmission via a coaxial cable

Due to their shielding, coaxial cables do not emit electromagnetic waves.
However, they can intercept electromagnetic interference from the
surroundings through their shielding.
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Signal propagation in a coaxial cable

Equivalent circuit diagram for a ∆z length segment of a coaxial cable
∆ U

∆ I

R L

C
1

G

R, L, C, 1
G represent resistance, inductance,

capacitance, and conductance per uni t
length, respectively.

In an ideal cable, R and G are both equal to
0.

Derivation of the general wave equation for a coaxial cable

∆U = −(R ·∆z ) · I − (L ·∆z ) · ∂I
∂t

.

∆I = − (G ·∆z ) ·U − (C ·∆z ) · ∂U
∂t

.

Dividing by ∆z and taking the limit as ∆z → 0 yields

∂U

∂z
= −R · I − L · ∂I

∂t
,

∂I

∂z
= −G ·U − C · ∂U

∂t
.
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Wave equation for a coaxial cable

∂U

∂z
= −R · I − L · ∂I

∂t
, | ∂

∂z
·

∂I

∂z
= −G ·U − C · ∂U

∂t
. | ∂

∂t
·

∂2U

∂z 2
= −R · ∂I

∂z
− L

∂2

∂z∂t
I ,

∂2

∂z∂t
I = −G · ∂U

∂t
− C · ∂

2U

∂t2
.

∂2U

∂z 2
= LC

∂2U

∂t2
+ (LG + RC )

∂U

∂t
+ RGU .

Ideal cable: R=0, G=0. ∂2U

∂z 2
= LC

∂2U

∂t2

(Wave equation with v = 1√
LC

).
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Properties of a coaxial cable

In a real cable, G is very close to 0.

In a real cable, R ̸= 0 leads to dispersion. In practice, the cables used
are usually so short that dispersion can be neglected, so R = 0 can be
assumed.

L = µ
2π ln b

a [H/m], C = 2πϵ
ln b

a

[F/m].

⇒ v =
1√
LC

=
1

√
µϵ

.

Thus, the choice of dielectric determines v .

Characteristic impedance: Z := dU
dI =

√
L
C .

The characteristic impedance depends on the geometry of the cable,
i.e., its inner and outer diameter as well as the dielectric used.
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Reflections at the ends of the cables

U (t , x ) = f (x − vt) + g(x + vt),

representing an incoming + reflected wave.

Input signal: UE , IE . Z = UE
IE

.

Reflected signal: UR, IR, Z = UR
IR

.
Voltage drop across the resistor R: UE +UR.
Current through R: IE + IR.

⇒ R =
UE +UR

IE − IR
=

UE

(
1 + UR

UE

)
IE

(
1− IR

IE

) = Z
1 + ρ

1− ρ

with the reflection coefficient ρ := UR
UE

= IR
IE

. It holds ρ = R−Z
R+Z .

Open cable: R = ∞. ρ = 1. Complete reflection at the cable end.
Short-circuited cable: R = 0. ρ = −1. Reflection with opposite
amplitude.
Terminated cable: R = Z . ρ = 0. No reflection.
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