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Recapitulation of the previous lecture

Processing of analog detector signals

The analog signals from particle detectors are usually very small.

Example: MDT drift tube filled with Ar/CO2 (93:7) at 3 bar.
dE
dx = 7.5 keV/cm≈̂7.5/0.03 = 250 Electron ion pair/cm.

At a gas gain of 20,000 this corresponds a total charge of

only ∼ 1 pC.

⇒ Protection of small signals by a Faraday cage.

⇒ Amplification of signals.

⇒ Transmission of unamplified signal over as short as possible distances.
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Recapitulation of the previous lecture

A Faraday cage in electrostatics

No electric field inside a conductors, otherwise there would be a

current.

The electric field in a region perfectly enclosed by a conducting cavity

equals 0.

Proof by contradiction.

Γ ’

(Fig.5-12 from Feynman lectures Vol 2)

If E were non-zero inside the cavity, there

would be a path Γ′ for which
∫
Γ′
E⃗ · ds⃗ ̸= 0.

Since E⃗ = 0 inside the conductor, then∮
Γ

E⃗ · ds⃗ =
∫
Γ′
E⃗ · ds⃗ ̸= 0, which contradicts

rot E⃗ = 0.
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Recapitulation of the previous lecture

Functioning of a Faraday cage in alternating fields

1. Equation of motion underlying the Drude model

me
dv⃗

dt
= −me

τ
v⃗ − eE⃗.

Considering E⃗(t, x⃗) = E⃗(ω, x⃗)e−iωt, then v⃗(t, x⃗) = v⃗(x⃗)e−iωt, and we obtain

v⃗(x⃗) =
−eτ

me

1

1− iωτ
E⃗(ω, x⃗),

leading to

j⃗ = −nev⃗ =
e2τ

me

1

1− iωτ
E⃗ =:

σ0
1− iωτ︸ ︷︷ ︸
=:σ(ω)

E⃗
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Recapitulation of the previous lecture

Functioning of a Faraday cage in alternating fields

2. Maxwell’s equations for electromagnetic fields in conductors

div E⃗ = 0. div B⃗ = 0. rot E⃗ = −∂B⃗

∂t
. rot B⃗ =

1

c2ϵ0
j⃗ +

1

c2
∂E⃗

∂t
.

rot(rot E⃗) = grad(div E⃗︸ ︷︷ ︸
=0

)−∆E⃗ = rot

(
−∂B⃗

∂t

)
= − ∂

∂t
rot B⃗.

Now, utilizing j⃗ = σ(ω)E⃗ for E⃗(t, x⃗) = E⃗(ω, k⃗)e−i(ωt−k⃗·x⃗), we obtain

|⃗k|2 = ω2

c2

[
1 + i

σ(ω)

ϵ0ω

]
.

σ(ω) = σ0
1−iωτ →

ωτ≫1

iσ0
ωτ , thus

|⃗k|2 = ω2

c2

(
1− σ0

ϵ0ω2τ

)
=

ω2

c2

(
1− ne2

ϵ0ω2

)
,

which is negative for ω < ne2

ϵ0
. Then, |⃗k| is imaginary and the electric field

exponentially decreases with increasing penetration into the conductor.
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Recapitulation of the previous lecture

Functioning of a Faraday cage in alternating fields

Conclusions

Even alternating fields can be shielded by a Faraday cage if their

frequency does not become too high.

For example, choosing aluminium or brass as sufficiently thick

material for the Faraday cage, one can shield fields up to the

gigahertz range.
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Recapitulation of the previous lecture

Bipolar transistor as an example of a signal amplifier

A bipolar transistor is an npn or pnp junction with 3 terminals.

=̂

(Kollektor)

(Basis)

(Emitter)

In Sperrrichtung betrieben

In Durchgangsrichtung betrieben

Polarity of an npn transistor
Increasing UBE reduces the voltage

between the base and collector,

causing diode BC to conduct more

and thus allowing more current to

flow from the emitter than has

flowed into the base.
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Input and out put characteristics of a bipolar transistor

Tietze, Schenk, Halbleiterschaltungstechnik, 1993
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Recapitulation of the previous lecture

Concept of small-signal amplification

A bipolar transistor is a current amplifier with the current

amplification B = IC
IB

.

The value of B depends on the values of the applied voltages.

In practice, one is interested in the amplification of small signals. To

achieve this, these small signals are superimposed on a DC voltage

that sets the operating point of the transistor.

Since B fluctuates from one transistor to another, the amplification is

determined by the circuitry of the transistor, as explained in the

following examples.
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Recapitulation of the previous lecture

Basic equations for small-signal amplification

I
B

I
C

U
BE

U
CE

C

B

E

Goal: Amplification of small, time-varying signals.

dIB =
∂IB
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IB
∂UCE

∣∣∣∣
UBE

· dUCE ,

dIC =
∂IC
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IC
∂UCE

∣∣∣∣
UBE

· dUCE .

1
rBE

:= ∂IB
∂UBE

|UCE
is small. ∂IB

∂UCE
|UBE

≈ 0.

Slope S := ∂IC
∂UBE

|UCE
is large. 1

rCE
:= ∂IC

∂UCE
|UBE

is small.

⇒ dIB =
1

rBE
· dUBE ,

dIC = S · dUBE +
1

rCE
· dUCE .

10
10



Recapitulation of the previous lecture

1st Example: Emitter circuit with current feedback

U
V

Eingangs−

spannung

(Versorgungsspannung)

(Ausgangsspannung)
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Recapitulation of the previous lecture

Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification A := dUa
dUe

U
V

R
C

R
E

r
CE

r
BE

U
e

C
I

E
I

U
a

+

dIE =
dUe

rBE +RE
≈

rBE≪RE

dUe

RE
.

dIC =
d(UV − Ua)

RC
−dUa

RC
dUV =0

.

dIE = dIC ⇒ A =
dUa

dUe
= −RC

RE
.

The circuit is inverting with a small-signal amplification that depends

only on the configuration of the transistor, namely RC and RE.
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Recapitulation of the previous lecture

2nd Example: Emitter circuit with voltage feedback
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Recapitulation of the previous lecture

Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification A := dUa
dUe

UV

RC

r CE

r BE

Ua

UE

RN

R1

NI

eI

+
Sehr groß, da

Diode in Sperrichtung

Sehr klein, da Diode in Durchlassrichtung,

B wie auf Erde.

dUe = R1dIe, dUa = RNdIN = −RNdIE .

⇒ A =
dUa

dUe
=

−RN

R1
.

The circuit is inverting with a small-signal amplification that depends

only on the configuration of the transistor, namely RN and R1.
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Recapitulation of the previous lecture

Operating point adjustment

Spannungsteiler zur Fest−

legung des Arbeitspunktes

des Transistors

Kapazitives Auskoppeln,

Kapazitives Einkoppeln des Signals, um den

Arbeitspunkt nicht zu verschieben. Möglich, da

man nur dU  verstärken will.e

um nur dU  zu sehen.a
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Operation of a differential amplifier

Constant current source at

the emitter. ⇒ dIk = 0.

Internal resistance of the

constant current source: rk.

Ik = IC1 + IC2 ⇒ dIC1 = −dIC2.

So dUa1 = −dUa2.

Also

dUe1 = dUBE1 = −dUBE2 = −dUe2.

UD := Ue1 − Ue2.

dUe1 = d(Ue1 − Ue2 + Ue2)
= dUD + dUe2 = dUD − dUe1,

thus dUD = 1
2dUe1.

⇒ Differential amplification AD = dUa1
dUD

AD = dUa1
2dUBE1

= −1
2S(RC ||rCE).

Since S is large, AD is also large.

Besides the differential amplification, there is also a much smaller

common-mode amplification ACM := dUa1
d(Ue1+Ue2)/2

= −1
2
RC
rk

, which

immediately follows from the formula for the amplification of the emitter

circuit with current feedback.
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Alternative to bip. transistors: field-effect transistors

Construction of an n-channel junction field-effect transistor

S: Source.

G: Gate.

D: Drain. −

−

−

−

Control of the size of the charge

carrier-free zone via the value of the

voltage UGS.

Thickness of the charge carrier-free

zone determines the resistance

between drain and source.

Advantage of field-effect transistors

over bipolar transistors: Lower power

consumption, as the control is done

via the applied electric field and not

via a current.
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Metal-oxid-semiconductor field-effect transistor

Structure forms a capacitor from gate terminal, dielectric, and bulk terminal.
Application of positive voltage between gate and bulk charges the capacitor.
Electric field causes migration of minority carriers (electrons in p-silicon) to the junction and
recombination with majority carriers (defect electrons in p-silicon), known as depletion.
Space charge region forms at the junction with negative space charge.
At threshold voltage Uth, displacement of majority carriers becomes significant, limiting recombination.
Accumulation of minority carriers results in near-inversion of p-doped substrate close to the oxide,
known as strong inversion
Increased gate voltage induces band bending of conduction and valence bands at the junction in band
model.
Fermi level shifts closer to the conduction band than the valence band, inverting the semiconductor
material.
Formed thin n-type conducting channel connects source and drain n-regions, allowing charge carriers
to flow (almost) unimpeded from source to drain.
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Operational amplifiers

Operational amplifiers are broadband differential amplifiers with high

gain and high input impedance.

Operational amplifiers are available as integrated circuits made of

bipolar and field-effect transistors.

Input stage designed as a

differential amplifier, hence two

inputs (+ and -).

Positive and negative supply

voltage required to drive the

inputs and outputs positively and

negatively.

Open-loop gain:

AD :=
dUa

dUD
.
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Characteristic of an operational amplifier

Offset voltage U0 adjustable in

most operational amplifiers.

Linear dependency of Ua on UD

in a small range of UD around

U0.

Constant output voltage outside

of this range (amplifier

saturation).
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Principle of negative feedback

Ua = AD(Ue − kUa) ⇔ Ua = AD
1+kAD

Ue ≈
AD→∞

1
kUe.

UP = Ue, UN = kUa, |Ua|¡const. Thus,

|UP − UN | = Ua

AD
→

AD→∞
0,

i.e., UP = UN .
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Non-inverting amplifier

Ue = UP = UN =
R1

R1 +RN
Ua

⇔ Ua =

(
1 +

RN

R1

)
Ue.

Amplification is positive.

Value of the amplification is fully determined by the choice of RN and

R1.
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Voltage follower

Ua = Ue.

Small output impedance, i.e.,

behaves like a voltage source.

Use of this circuit as an

impedance converter.
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Inverting amplifier

UP = UN = 0.

⇒ Ua = RN · IN = RN (−I1) = −RN
Ue

R1
= −RN

R1
Ue.

Amplification is negative.

Value of the amplification is fully determined by the choice of RN and

R1.
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Pulse shaping

Introductory Example: Signal Pulse of a Cylindrical Drift Tube

Signalverlauf

ohne Impulsformung

t

Signalverlauf nach einem Differenzierglied

Pulse shaping with a differentiator

Retains the information of the

signal start time.

Significantly reduces the dead

time of the tube compared to

the case without pulse shaping.
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Low-pass and high-pass filters

Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

iωC

R+ 1
iωC

Ue

=
1

1 + iωRC
Ue.

Ua =
R

R+ 1
iωC

Ue

=
1

1 + 1
iωRC

Ue.

ω → 0: Ua → Ue.

ω → ∞: Ua → 0.

ω → 0: Ua → 0.

ω → ∞: Ua → Ue.
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Low-pass and high-pass filters

Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

1 + iωRC
Ue. Ua =

1

1 + 1
iωRC

Ue.

3dB Cutoff Frequency

1

|1 + iωRC|2
=

1

2
⇔ ω =

1

RC
.

ω ≫ 1
RC : Ua ≈ 1

iωRCUe =
Ûe(ω)
iωRC eiωt, so

Ua ≈ 1
RC

∫
Uedt.

Integrating above the cutoff

frequency.

3dB Cutoff Frequency

1∣∣1 + 1
iωRC

∣∣2 =
1

2
⇔ ω =

1

RC

ω ≪ 1
RC :

Ua ≈ iωRCUe = iωRCÛee
iωt, so

Ua ≈ RC dUe
dt .

Differentiating above the cutoff

frequency.
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Behavior of a low pass filter

C
R

U U
e a

1st possibility: Use of complex impedances

and a Fourier transformation from the

frequency to the time domain.

2nd possibility: Solving the following differential equation.

Ua =
Q

C
⇒ dUa

dt
=

1

C
I.

Ue = UR + Ua = R · I + Ua= RC
dUa

dt
+ Ua.
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Low pass: behavior with a rectangular pulse

e
U

0
U

∆ t t0

Ue(t) =

{
U0 (t ∈ [0,∆t]),
0 otherwise.

t ≤ 0: 0 = RC dUa
dt + Ua, hence Ua = 0.

t ∈ (0,∆t): U0 = RC
dUa

dt
+ Ua

⇔ U0 − Ua = RC
dUa

dt
⇔

t∫
0

1

RC
dt′ =

U(t)∫
0

dUa

U0 − Ua

⇔ − t

RC
= ln

U0 − Ua(t)

U0
⇔ e−

1
RC

t =
U0 − Ua(t)

U0

⇔ Ua(t) = U0(1− e−
1

RC
t).

t ≥ ∆t: dUa
dt = − 1

RCUa, hence Ua(t) = Ua(∆t)e−
1

RC
(t−∆t).
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Low pass: behavior with a rectangular pulse

Ua

U0

t>>RC∆

t<<RC∆

∆ t t

∆t ≫ RC: Ua(t → ∆t− 0) ≈ U0.

∆t ≪ RC: Ua(t) ≈ U0
t

RC for t ∈ (0,∆t).
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Behavior of a high pass filter

U
e

U
a

RC
Ua = R · I = RC

d(Ue − Ua)

dt
= RC

dUe

dt
−RC

dUa

dt
.

Choose Ue as before, as a rectangular pulse.

t ≤ 0: Ua(t) = 0.

t ∈ (0,∆t): Ua(t) = −RC dUa
dt , hence Ua(t) = Ua(0)e

− t
RC= U0e

− t
RC .

ϵ → 0 + 0 : t ∈ [∆t,∆t+ ϵ): Ue(t) = U0

(
1− t−∆t

ϵ

)
, hence dUe

dt = −U0
ϵ .

Ua +
RC

ϵ
U0 = −RC

dUa

dt

⇔ ϵUa +RCU0 = −ϵRC
dUa

dt

⇔
ϵ→0

U0 = −ϵ
dUa

dt
, U0ϵ = −ϵ [Ua(∆t+ ϵ)− Ua(∆t)]

⇔ Ua(∆t+ ϵ) = Ua(∆t)− U0= U0

(
e−

∆t
RC − 1

)
t ≥ ∆t: Ua(t) = U0

(
e−

∆t
RC − 1

)
e−

t−∆t
RC .
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Low pass: behavior with a rectangular pulse

∆ t

t

t

Bipolar pulse shaping possible with a

high pass.
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Four-pole equations

I
1

I
2

1
U

2
UVierpol

AusgangsstromEingangsstrom

Eingangsspannung Ausgangsspannung

Low-pass, high-pass, and similar circuits

with a total of four connections are called

four-poles. Using so-called four-pole

equations, one can easily calculate the

behavior of circuits composed of many

four-poles.

Two of the four quantities are freely selectable, the other two depend on

these. For example, U1 = U1(I1, I2), U2 = U2(I1, I2).

dU1 =
∂U1

∂I1

∣∣∣∣
I2

dI1 +
∂U1

∂I2

∣∣∣∣
I1

dI2,

dU2 =
∂U2

∂I1

∣∣∣∣
I2

dI1 +
∂U2

∂I2

∣∣∣∣
I1

dI2.

If the four-pole consists only of linear, passive components, then even
∂Uk
∂Iℓ

= Uk
Iℓ

holds.
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Chains of four-poles

For the calculation of the behavior of a chain of four-poles, the chain form

is useful, where the input or output variables are expressed as functions of

the output or input variables:

dU1 =
∂U1

∂U2

∣∣∣∣
I2

dU2 +
∂U1

∂I2

∣∣∣∣
U2

dI2,

dI1 =
∂I1
∂U2

∣∣∣∣
I2

dU2 +
∂I1
∂I2

∣∣∣∣
U2

dI2.

d

(
U1

I1

)
= A · d

(
U2

I2

)
.

To obtain the behavior of a four-pole consisting of a chain of four-poles,

one only needs to multiply the production of the matrices Ak of the

individual four-poles with each other.
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Pulse shaping with low and high pass filters

For pulse shaping of detector signals, one connects low and high pass

filters of different time constants (RC) in series. To separate the passes,

an operational amplifier with capacitive coupling of the signals can be

used.

Low Pass High Pass

e
U

a
U

−

+

C

R

e
U

a
U

C

R

−

+

Ua =

(
1 +

1

iωRC

)
Ue.

Amplification of low frequencies.

Ua = (1 + iωRC)Ue.

Amplification of higher frequencies.
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Unipolar and bipolar pulse shaping

A+

A −

Bipolar geformtes Signal

Unipolar geformtes Signal

Ua

t

|A+| = |A−|

Disadvantage of unipolar signal shapes:

Drift of the pulse baseline due to

the superposition of successive

pulses at high signal rates.

Remedy for this problem: Use of

bipolar pulse shaping, which on

average does not shift the pulse

baseline.
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