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Fundamentals of statistical treatment of experimental
data



Recapitulation of the previous lecture

Introductory example: beam energy measurement

Example: Measurement of the energy of a monoenergetic particle beam.

Notations

ES: actual beam energy.

N : number of measurements of beam energy.

Ek: result of the k-th measurement of beam energy.

Frequency Distributions
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When N is large, repeating the N measurements yields (nearly) the

same frequency distribution.

In the limit N → ∞, the frequency distribution converges to the

probability distribution for the outcome of the measurement.
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Recapitulation of the previous lecture

Introductory example: beam energy measurement
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The probability of measuring Ek when the beam energy is ES depends

on the value of ES and the measurement method. If one knows the

probability function p(Ek;ES), one can determine ES from the

measurement of the frequency distribution.

In practice, p(Ek;ES) is only partially known, and one tries to infer

p(Ek;ES) from the measured frequency distribution, which provides an

estimate of ES. In statistics, methods are employed to infer the

underlying probability distributions from frequency distributions.

5
5



Recapitulation of the previous lecture

Probability distributions

A physical measurement is a random process.

A measured quantity x, which represents the outcome of a random

process, is called a random variable or random quantity.

Any function of x is also a random variable.

If the random variable can only take discrete values, there is a

probability for the occurrence of each of these values, which is the

probability function.

For random variables with continuous range of values, the probability

density p(x) replaces the probability function. Let Ω be a measurable

set of possible values of x, whose measure is greater than zero. Then∫
Ω

p(x)dx

is the probability of observing a value x ∈ Ω.
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Axiomatic Definition of Probability

The mathematical field of probability theory is based on Kolmogorov’s

Axioms.

Kolmogorov’s Axioms

Let Σ denote a set of events.

1. For every event A ∈ Σ, the probability of the occurrence of A is a real

number p(A) ∈ [0, 1].

2. The certain event S ∈ Σ has probability p(S) = 1.

3. The probability of the union of countably many incompatible events is

equal to the sum of the probabilities of the individual events. Here,

events Ak are incompatible if they are pairwise disjoint, i.e.,

Ak ∩Aℓ = ∅ for all k ̸= ℓ.
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Recapitulation of the previous lecture

Characteristics of probability distributions

Remark. In this section, we consider probability densities. Probability

functions of discrete variables are also covered if one considers

the δ-distribution as a probability density.

Nomenclature. D: Range of values of a random variable x = (x1, ..., xn).
p(x): Probability density of x.

(D is the domain of p.)

Definitions

The expectation value of x, E(x) (also < x >), is defined as

E(x) :=

∫
D

x · p(x)dx.

The covariance matrix cov(xk, xl) is defined as

cov(xk, xl) :=< (xk− < xk >) · (xl− < xl >) > .

The diagonal element cov(xk, xk) is called the variance of xk, V ar(xk),
and

√
V ar(xk) is the standard deviation σ(xk).
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Recapitulation of the previous lecture

Expectation value of a function of a random variable

A function f(x) is also a random variable.

< f >=

∫
D

f(x)p(x)dx.

If f(x) = f(x− < x > + < x >) is significantly different from 0 only for

small values of |x− < x > |, one can approximate f(x) by

f(< x >) +
df

dx

∣∣∣∣
<x>

· (x− < x >)

Then

< f > ≈
〈
f(< x >) +

df

dx

∣∣∣∣
<x>

· (x− < x >)

〉
= < f(x) > +

〈
df

dx

∣∣∣∣
<x>

· (x− < x >)

〉
= f(< x >) +

df

dx

∣∣∣∣
<x>

· (< x > − < x >) = f(< x >).
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Recapitulation of the previous lecture

Variance of a function of a random variable

Special Case: f(x) ∈ |R.

V ar(f) =
〈
(f− < f >)2

〉
= ⟨[f − f(< x >)]⟩

≈

〈[
n∑

k=1

df

dxk

∣∣∣∣
<x>

· (xk− < xk >)

]2〉

=

〈 n∑
k,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· (xk− < xk >) · (xℓ− < xℓ >)

〉

=
n∑

k,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· ⟨(xk− < xk >) · (xℓ− < xℓ >)⟩

=
n∑

k,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· cov(xk, xℓ),

which is the well-known error propagation formula.
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Examples of important probability distributions



Recapitulation of the previous lecture

The binomial distribution

The binomial distribution gives the probability of observing nk events

out of a total of N events when νk events are expected:

p(nk; νk) =

(
N
nk

)(νk
N

)nk
(
1− νk

N

)N−nk

.

With p := νk
N , one obtains from

0 =
d

dp
1 =

d

dp

N∑
nk=0

(
N
nk

)
pnk(1− p)N−nk

=

N∑
nk=0

(
N
nk

)[
nkp

nk−1(1− p)N−nk − (N − nk)p
nk(1− p)N−nk−1

]
=

1

p
< nk > − 1

1− p
< N − nk >=

(
1

p
+

1

1− p

)
< nk > +

N

1− p

=
1

p(1− p)
< nk > +

N

1− p
⇔ < nk >= N · p = N · νk

N
= νk.

Using the same calculation trick, one obtains V ar(nk) = νk(1− νk
N ).
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Transition to the Poisson distribution

If νk ≳ 10, νk ≪ N , and N are large, one can approximate it by the Poission

distribution. The approximation is a results of the Stirling formula:

n! ≈
(n
e

)n√
2πn für n → ∞.

p(nk; νk) =
N !

nk!(N − nk)!
pnk(1− p)N−nk

≈ 1

nk!
pnk

(
N

e

)N √
2πN

1(
N−nk

e

)N−nk √
2π(N − nk)

(1− p)N−nk

=
1

nk
pnke−nk

√
N

N − nk︸ ︷︷ ︸
→1 f. N→∞

NN

(N − nk)N−nk
(1− p)N−nk

≈ 1

nk!
e−nkpnkNnkNN−nk(1− p)N−nk

1

(N − nk)N−nk

=
νk
nk!

e−nk
(N − νk)

N−nk

(N − nk)N−nk
≈

νnk
k

nk!
e−νk (Poisson distribution).
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Properties of the Poisson distribution

Poisson distribution

p(nk; νk) =
νnk
k

nk!
e−νk .

Normalization

∞∑
nk=0

p(nk; νk) = e−νk

∞∑
nk=0

νnk
k

nk!
= e−νk · eνk = 1.

Expectation value: νk, resulting from 0 = d
dνk

∞∑
nk=0

p(nk; νk).

Variance: νk, resulting from 0 = d2

dν2k

∞∑
nk=0

p(nk; νk).
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Poisson distribution for νk → ∞
When νk becomes large, the probability of the occurrence of small values

of nk is small. Then nk can be considered large, and for nk! in the Poisson

distribution, Stirling’s approximation can be used:

νnk
k

nk!
e−νk ≈

νnk
k

nnk
k

1√
2πnk

enk−νk

≈ 1√
2πνk

exp

(
ln

νnk
k

nnk
k

)
exp(nk − νk)

=
1√
2πνk

exp

(
nk ln

νk
νk + nk − νk

)
exp(nk − νk)

=
1√
2πνk

exp

(
nkln

1

1− nk−νk
νk

)
exp(nk − νk)

≈ 1√
2πνk

exp

[
nk ·

(
−nk − νk

νk
− 1

2

(nk − νk)
2

ν2k

)]
︸ ︷︷ ︸

≈−(nk−νk)−
(nk−νk)2

2νk

exp(nk − νk)

≈ 1√
2πνk

e
− (nk−νk)2

2νk .
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The normal distribution

Normal distribution of a one-dimensional random variable x ∈ R

p(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .

< x >= µ, V ar(x) = σ2.

The Poisson distribution approaches a normal distribution in the limit

νk → ∞ with the expected value νk and the variance νk.

Normal distribution of a d-dimensional random variable x ∈ Rd

p(x;µ,Σ) =
1

(2π)d/2
1

det(Σ)
exp

(
−1

2
(x− µ)tΣ(x− µ)

)
.

Σ ∈ Rd×d, µ ∈ Rd.

< x >= µ.
cov(xk, xl) = Σk,l.
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Properties of the one-dimensional normal distribution

wn := Probability of observing a value x ∈ [µ− nσ, µ+ nσ].

n wn

1 0.6827
2 0.9545
3 0.9973
4 1− 6.3 · 10−5

5 1− 5.7 · 10−7

wn n

0.900 1.645
0.950 1.960
0.990 2.576
0.999 3.290
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Concept of stochastic convergence

(tn) is a sequence of random variables and T is also a random variable. We

say tn converges stochastically to T if for every p ∈ [0, 1[ and ϵ > 0, there

exists an N such that the probability P that |tn − T | > ϵ is less than p for

all n > N :

P (|tn − T | > ϵ) < p (n > N).

In other words: The probability of observing a value tn different from T
vanishes as n → ∞.
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Law of large numbers. Central limit theorem

The law of large numbers

(xn) is a sequence of independent random variables, each following the

same distribution function. µ denotes the expected value of xn. Then the

arithmetic mean

1

N

N∑
n=1

xn

converges stochastically to µ.

The central limit theorem

(xn) is a sequence of identically distributed random variables with mean µ
and standard deviation σ. Then as N → ∞, the standardized random

variable

ZN :=

N∑
n=1

xn −Nµ

σ
√
N

converges pointwise to a normal distribution with mean 0 and standard

deviation 1.

19
19



Point estimation

Let α be a parameter of a probability distribution. The goal of point

estimation is to find the best estimate (the best measurement in the

terminology of physicists) of α.

x: Random variable corresponding to the experimental measurements.
p(x;α): Probability density for the measurement of x as a function of the

parameter α.

x and α can be multidimensional.

Definition. A point estimator Eα is a function of x used to estimate the

value of the parameter α. Let α̂ denote this estimate. Thus, α̂ = Eα(x).
Goal is to find a function Eα such that α̂ is as close as possible to the true

value of α.

Since α̂ is a function of random variables, α̂ itself is a random variable.

p(α̂) =

∫
D

Eα(x)p(x;α)dx,

where α denotes the true value of the parameter.
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Quality criteria for point estimators

Consistency

n: Number of measurements used for the point estimation.

α̂n: Corresponding estimate.

α0: True value of α.
Eα is called a consistent point estimator if α̂n converges stochastically to

α0. This means that the probability of estimating a value different from

α0 goes to 0 as n → ∞.

Unbiasedness

The bias of an estimate α̂ is defined as

bn(α̂) := E(α̂n − α0) = E(α̂n)− α0.

The point estimator is unbiased if

bn(α̂) = 0, or E(α̂n) = α0

for all n.

21
21



Illustration of Consistency and Unbiasedness
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Further quality criteria for point estimators

Efficiency

Let Vmin be the minimum possible variance among all point estimators of

a real-valued parameter. The efficiency of a particular point estimator is

given by the ratio Vmin
V ar(α̂) , where V ar(α̂) is the variance of α̂ for that point

estimator.

Sufficiency

Any function of data x is called a statistic. A sufficient statistic for α is a

function of the data that contains all the information about α.
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Point estimators used in high energy physics



Maximum likelihood method

p(x;α): Probability of obtaining the measured values x given a parameter

α.

Substituting the measured values x into the function p(x;α) yields a

statistic of x, which is called the likelihood or the likelihood function

L(x;α).

The term likelihood is used to indicate the relationship with the

probability density p(x;α) while making it clear that L is not a

probability function.

Let f(xk;α) be the probability density for the outcome of a single

measurement xk. With n independent measurements x = (x1, . . . , xn), we

have

L(x1, . . . , xn;α) =

n∏
k=1

f(xk;α).

In the method of maximum likelihood, the estimate for α is taken as the

value of α that maximizes L(x;α).

25
25



Asymptotic behavior of maximum likelihood

n → ∞
The point estimator is consistent.

The point estimator is efficient.

α̂ is normally distributed.

Due to consistency, the point estimator is asymptotically unbiased.

Finite n
To determine the behavior of the point estimator with limited data size

n, experimental practice uses ensembles of randomly generated simulated

data to which the point estimator is applied.
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Method of least squares

n measurements x1, . . . , xn.

E(xk;α): Expectation value of xk given α (ttheoretical predictionffor the

value of xk).

V = (cov(xk, xℓ)): Covariance matrix. In general, V is also a function of α.

Q2 :=

n∑
k,ℓ=1

[xk − E(xk;α)]V
−1
kℓ (α) [xℓ − E(xℓ;α)] .

In the method of least squares, the estimate for α is chosen as the value

for which Q2 is minimized.

Remark. If Vkℓ(α) is unbounded, we may obtain nonsensical results for α.
For example, if Vkℓ(α) → ∞ as α → αnon-sense and xk − E(xk;α) remains

bounded, the minimization yields αnon-sense. In practice, Q2 is often

minimized iteratively. One starts with an estimate for V and varies V
during the minimization of Q2. Then, V is recalculated for the obtained

estimate of α, and the minimization is repeated with V fixed until α̂ no

longer changes significantly.
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