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Examples of important probability distributions



Recapitulation of the previous lecture

The binomial distribution

The binomial distribution gives the probability of observing nk events

out of a total of N events when νk events are expected:

p(nk; νk) =

(
N
nk

)(νk
N

)nk
(
1− νk

N

)N−νk
.

With p := νk
N , one obtains from

0 =
d

dp
1 =

d

dp

N∑
nk=0

(
N
nk

)
pnk(1− p)N−nk

=

N∑
nk=0

(
N
nk

)[
nkp

nk−1(1− p)N−nk − (N − nk)p
nk(1− p)N−nk−1

]
=

1

p
< nk > − 1

1− p
< N − nk >=

(
1

p
+

1

1− p

)
< nk > +

N

1− p

=
1

p(1− p)
< nk > +

N

1− p
⇔ < nk >= N · p = N · νk

N
= νk.

Using the same calculation trick, one obtains V ar(nk) = νk(1− νk
N ).
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Recapitulation of the previous lecture

Transition to the Poisson distribution

If ν ≳ 10, ν ≪ N u=and N are large, one can approximate it by the

Poission distribution. The approximation is a results of the Stirling

formula:

n! ≈
(n
e

)n√
2πn für n → ∞.

p(nk; νk) =
N !

nk!(N − nk)!
pnk(1− p)N−nk

≈ 1

nk!
pnk

(
N

e

)N √
2πN

1(
N−nk

e

)N−nk √
2π(N − nk)

(1− p)N−nk

=
1

nk
pnke−nk

√
N

N − nk︸ ︷︷ ︸
→1 f. N→∞

NN

(N − nk)N−nk
(1− p)N−nk

≈ 1

nk!
e−nkpnkNnkNN−nk(1− p)N−nk

1

(N − nk)N−nk

=
νk
nk!

e−nk
(N − νk)

N−nk

(N − nk)N−nk
≈

νnk
k

nk!
e−νk (Poisson distribution).
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Recapitulation of the previous lecture

Properties of the Poisson distribution

Poisson distribution

p(nk; νk) =
νnk
k

nk!
e−νk .

Normalization

∞∑
nk=0

p(nk; νk) = e−νk

∞∑
nk=0

νnk
k

nk!
= e−νk · eνk = 1.

Expectation value: νk, resulting from 0 = d
dνk

∞∑
nk=0

p(nk; νk).

Variance: νk, resulting from 0 = d2

dν2k

∞∑
nk=0

p(nk; νk).
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Recapitulation of the previous lecture

When νk becomes large, the probability of the occurrence of small values

of nk is small. Then nk can be considered large, and for nk! in the Poisson

distribution, Stirling’s approximation can be used:

νnk
k

nk!
e−νk ≈

νnk
k

nnk
k

1√
2πnk

enk−νk

≈ 1√
2πνk

exp

(
ln

νnk
k

nnk
k

)
exp(nk − νk)

=
1√
2πνk

exp

(
nk ln

νk
νk + nk − νk

)
exp(nk − νk)

=
1√
2πνk

exp

(
nkln

1

1− nk−νk
νk

)
exp(nk − νk)

≈ 1√
2πνk

exp

[
nk ·

(
−nk − νk

νk
− 1

2

(nk − νk)
2

ν2k

)]
︸ ︷︷ ︸

≈−(nk−νk)−
(nk−νk)2

2νk

exp(nk − νk)

≈ 1√
2πνk

e
− (nk−νk)2

2νk .
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Recapitulation of the previous lecture

The normal distribution

Normal distribution of a one-dimensional random variable x ∈ R

p(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .

< x >= µ, V ar(x) = σ2.

The Poisson distribution approaches a normal distribution in the limit

νk → ∞ with the expected value νk and the variance νk.

Normal distribution of a d-dimensional random variable x ∈ Rd

p(x;µ,Σ) =
1

(2π)d/2
1

det(Σ)
exp

(
−1

2
(x− µ)tΣ(x− µ)

)
.

Σ ∈ Rd×d, µ ∈ Rd.

< x >= µ.
cov(xk, xl) = Σk,l.
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Recapitulation of the previous lecture

Properties of the one-dimensional normal distribution

wn := Probability of observing a value x ∈ [µ− nσ, µ+ nσ].

n wn

1 0.6827
2 0.9545
3 0.9973
4 1− 6.3 · 10−5

5 1− 5.7 · 10−7

wn n

0.900 1.645
0.950 1.960
0.990 2.576
0.999 3.290
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Recapitulation of the previous lecture

Concept of stochastic convergence

(tn) is a sequence of random variables and T is also a random variable. We

say tn converges stochastically to T if for every p ∈ [0, 1[ and ϵ > 0, there

exists an N such that the probability P that |tn − T | > ϵ is less than p for

all n > N :

P (|tn − T | > ϵ) < p (n > N).

In other words: The probability of observing a value tn different from T
vanishes as n → ∞.
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Recapitulation of the previous lecture

Law of large numbers. Central limit theorem

The law of large numbers

(xn) is a sequence of independent random variables, each following the

same distribution function. µ denotes the expected value of xn. Then the

arithmetic mean

1

N

N∑
n=1

xn

converges stochastically to µ.

The central limit theorem

(xn) is a sequence of identically distributed random variables with mean µ
and standard deviation σ. Then as N → ∞, the standardized random

variable

ZN :=

N∑
n=1

xn −Nµ

σ
√
N

converges pointwise to a normal distribution with mean 0 and standard

deviation 1.
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Recapitulation of the previous lecture

Point estimation

Let α be a parameter of a probability distribution. The goal of point

estimation is to find the best estimate (the best measurement in the

terminology of physicists) of α.

x: Random variable corresponding to the experimental measurements.
p(x;α): Probability density for the measurement of x as a function of the

parameter α.

x and α can be multidimensional.

Definition. A point estimator Eα is a function of x used to estimate the

value of the parameter α. Let α̂ denote this estimate. Thus, α̂ = Eα(x).
Goal is to find a function Eα such that α̂ is as close as possible to the true

value of α.

Since α̂ is a function of random variables, α̂ itself is a random variable.

p(α̂) =

∫
D

Eα(x)p(x;α)dx,

where α denotes the true value of the parameter.
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Recapitulation of the previous lecture

Quality criteria for point estimators

Consistency

n: Number of measurements used for the point estimation.

α̂n: Corresponding estimate.

α0: True value of α.
Eα is called a consistent point estimator if α̂n converges stochastically to

α0. This means that the probability of estimating a value different from

α0 goes to 0 as n → ∞.

Unbiasedness

The bias of an estimate α̂ is defined as

bn(α̂) := E(α̂n − α0) = E(α̂n)− α0.

The point estimator is unbiased if

bn(α̂) = 0, or E(α̂n) = α0

for all n.
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Recapitulation of the previous lecture

Illustration of Consistency and Unbiasedness

α
0

α
0

α
0

α
0

n
n

n

n n

p(  )α

p(  )α p(  )α

p(  )α

α α

k
o

n
s
is

te
n

t
in

k
o

n
s
is

te
n

t

n

n

erwartungstreu nicht erwartungstreu

α α

13
13



Recapitulation of the previous lecture

Further quality criteria for point estimators

Efficiency

Let Vmin be the minimum possible variance among all point estimators of

a real-valued parameter. The efficiency of a particular point estimator is

given by the ratio Vmin
V ar(α̂) , where V ar(α̂) is the variance of α̂ for that point

estimator.

Sufficiency

Any function of data x is called a statistic. A sufficient statistic for α is a

function of the data that contains all the information about α.
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Point estimators used in high energy physics



Recapitulation of the previous lecture

Maximum likelihood method

p(x;α): Probability of obtaining the measured values x given a parameter

α.

Substituting the measured values x into the function p(x;α) yields a

statistic of x, which is called the likelihood or the likelihood function

L(x;α).

The term likelihood is used to indicate the relationship with the

probability density p(x;α) while making it clear that L is not a

probability function.

Let f(xk;α) be the probability density for the outcome of a single

measurement xk. With n independent measurements x = (x1, . . . , xn), we

have

L(x1, . . . , xn;α) =

n∏
k=1

f(xk;α).

In the method of maximum likelihood, the estimate for α is taken as the

value of α that maximizes L(x;α).
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Recapitulation of the previous lecture

Asymptotic behavior of maximum likelihood

n → ∞
The point estimator is consistent.

The point estimator is efficient.

α̂ is normally distributed.

Due to consistency, the point estimator is asymptotically unbiased.

Finite n
To determine the behavior of the point estimator with limited data size

n, experimental practice uses ensembles of randomly generated simulated

data to which the point estimator is applied.
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Recapitulation of the previous lecture

Method of least squares

n measurements x1, . . . , xn.

E(xk;α): Expectation value of xk given α (ttheoretical predictionffor the

value of xk).

V = (cov(xk, xℓ)): Covariance matrix. In general, V is also a function of α.

Q2 :=

n∑
k,ℓ=1

[xk − E(xk;α)]V
−1
kℓ (α) [xℓ − E(xℓ;α)] .

In the method of least squares, the estimate for α is chosen as the value

for which Q2 is minimized.

Remark. If Vkℓ(α) is unbounded, we may obtain nonsensical results for α.
For example, if Vkℓ(α) → ∞ as α → αnon-sense and xk − E(xk;α) remains

bounded, the minimization yields αnon-sense. In practice, Q2 is often

minimized iteratively. One starts with an estimate for V and varies V
during the minimization of Q2. Then, V is recalculated for the obtained

estimate of α, and the minimization is repeated with V fixed until α̂ no

longer changes significantly.
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Interval estimation

Goal: Determination of an interval which contains the true value of a

parameter with a given probability.

Limit case of the normal distribution

Let us assume the variable x ∈ |R is normally distributed, i.e.

p(x) = N(x;µ, σ) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 .

If µ and σ are known, then

p(a < x < b) =

b∫
a

N(x;µ, σ)dx =: β.

If µ is unknown, one can calculate p(µ+ c < x < µ+ d):

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c− x < −µ < d− x) = p(x− d < µ < x− c).
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Interval estimation with the normal distribution

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c− x < −µ < d− x) = p(x− d < µ < x− c).

That is, if x has been measured, the probability that the desired value of µ
lies between x− d and x− c is equal to β.

If x is a parameter α̂ from a point estimation conducted using the

method of maximum likelihood or the method of least squares, then α̂
is asymptotically normally distributed, and the above formulas can be

applied for interval estimation.

The intervals [a, b] or [x− d, x− c] are called confidence intervals. β is

the confidence level corresponding to the confidence level.
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Generalization to the multidimensional case

Q(x;µ,Σ) := (x− µ)tΣ−1(x− µ), x, µ ∈ |R.

p(Q) =
1

(2π)d/2
· 1√

det(Σ)
exp

(
−1

2
Q(x;µ,Σ)

)
.

In multiple dimensions, the confidence interval becomes a confidence

region corresponding to the confidence level β:

p(Q(x;µ,Σ) < K2
β) = β.
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Likelihood-based confidence intervals

−2 lnN(x = µ± σ;µ, σ)− [−2 lnN(x = µ;µ, σ] = 1.

3− 2− 1− 0 1 2 3
σ)/µ(x-

0

1

2

3

4

5

6

7

8

9

-2
ln

N
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Likelihood-Based Confidence Intervals

Generalization

0.5− 0 0.5 1 1.5 2 2.5

x

0

1

2

3

4

5-2
ln

L

x= α̂

α
−

α
+

Confidence Interval: [α−, α+].
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Hypothesis testing

Goal, to determine which hypothesis (for a probability distribution)

describes the recorded data point distributions (data).

Nomenclature. H0: null hypothesis.

H1: alternative hypothesis.

Simple and Composite Hypotheses

When the hypotheses H0 and H1 are given

completely without free parameters, the hypotheses are called simple

hypotheses.

If a hypothesis contains at least one free parameter, it is referred to

as a composite hypothesis.

Procedure

For hypothesis testing, W must be chosen such that

p(data ∈ W |H0) = α

with a small value of α and simultaneously

p(data ∈ D\W |H1) = β

with the smallest possible β.
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Introductory example of hypothesis testing

A theoretical model predicts the existence of a particle with mass M , the

production cross-section, and the partial width for decay into a photon

pair. To confirm or refute this model, one must examine the distribution

of mγγ.

dn

dm γγ

mγγmm1 2

Distribution if the model

is correct

the model is wrong

Distribution if

In the interval [m1,m2], one is

sensitive to the model’s prediction.

There are two hypotheses, namely

that the theory is correct or

incorrect.

H0: Null hypothesis: TTheory is

incorrect.“

H1: Alternative hypothesis: TTheory

is correct.“

With a sufficiently large amount of data, the probability that the measured

mγγ distribution looks like H0 is small if the theory is correct. At the same

time, the probability that the measured mass distribution looks like H1 is

large.
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Introductory example of hypothesis testing
dn

dm γγ

mγγmm1 2

Distribution if the model

is correct

the model is wrong

Distribution if

n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.
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Introductory example – experimental practice

n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.

Experimental Practice

α = 5.7 · 10−7, which corresponds to 5σ of a normal distribution, to

claim the discovery of a particle.

With a value of α = 0.3%, which corresponds to 3σ of a normal

distribution, one says there is evidence for the existence of a new

particle.
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Type I and type II errors

The confidence level α is defined as the probability that x ∈ W if the null

hypothesis H0 is correct:

p(x ∈ W |H0) = α.

The probability β represents the likelihood of incorrectly rejecting the

alternative hypothesis H1:

p(x ∈ D\W |H1) = β.

H0 correct H1 correct

Approach

x /∈ W ⇒ H0 is Good acceptance, since Contamination

considered correct p(x ∈ D\W |H0) = 1− α Type II error

is large p(x ∈ D\W |H1) = β.

x ∈ W ⇒ H0 is Wrong decision Rejecting H0

rejected, H1 is Type I error good, since

considered correct p(x ∈ W |H0) = α p(x ∈ W |H1) = 1− β
is small is large.
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