

Beam waist measurements

MADMAX Summer Collaboration Meeting

04.07.2025

Lea Stankewitz

Setup and goal of the measurement

- Measure the beam waist ω_0 • and the beam waist position z_0
- Mirror should be placed at z₀ to • reflect the light back with the same beam shape and size

Beadpull measurements

• Dimension of the measurement:

	start	stop	stepsize
х	-150 mm	150 mm	10 mm
У	0 mm	0 mm	
Z	2230 mm	2380 mm	5 mm

• Z = 2300 mm is the designed mirror position

Measure E(x,y,z)

$$E_{field}(x, y, z) = \sqrt{\Delta\Gamma} \cdot \frac{\sqrt{4 \cdot P_{in}}}{\epsilon_0 \alpha_0 i 2\pi\nu}$$

Known variables:

- Permittivity $\epsilon_b = 9.2 \pm 0.2 \text{ A} \cdot \text{s} \cdot \text{V}^{-1} \cdot \text{m}^{-1}$
- Bead radius r_b = 1.465 ±0.007 mm
- Input power $P_{in} = 10 \text{ mW} (10 \text{ dBm})$
- Mirror radius r_m = 150 mm
- Polarizability of the bead in the E field:

 $\alpha_0 = 4\pi r_b^3 \frac{\epsilon_b - 1}{\epsilon_b + 2}$

• $\nu = 18 \text{ GHz}$ to 24 GHz in 0.006 GHz steps

Measurement variables:

- Γ_b (reflectivity with bead)
- Γ₀ (reflectivity without the bead)
- $\Delta \Gamma = \Gamma_{\rm B} \Gamma_{\rm 0}$

Raw reflection data

04.07.2025

Reflection as $P_{reflected}/P_{in}$ with $P_{in} = 10 \text{ mW}$

Calculate $\sqrt{(\Delta\Gamma)}$ to measure E(x,y,z)

- Bead outside the beam at ± 125 mm
- Fit Γ_0 for all purple data points
- $\Delta \Gamma = \Gamma_{\rm B} \Gamma_{\rm 0}$
- Example at z = 2300 mm and y = 0 mm

Extraction of E field using beadpull

$$E_{field}(x, y, z) = \sqrt{\Delta\Gamma} \cdot \frac{\sqrt{4 \cdot P_{in}}}{\epsilon_0 \alpha_0 i 2\pi\nu}$$

Known variables:

- Permittivity $\epsilon_b = 9.2 \pm 0.2 \text{ A} \cdot \text{s} \cdot \text{V}^{-1} \cdot \text{m}^{-1}$
- Bead radius r_b = 1.465 ±0.007 mm
- Input power P_{in} = 10 mW (10 dBm)
- Mirror radius r_m = 150 mm
- Polarizability of the bead in the E field:

$$\alpha_0 = 4\pi r_b^3 \frac{\epsilon_b - 1}{\epsilon_b + 2}$$

• v = 18 GHz to 24 GHz in 0.006 GHz steps

Beam waist fit

- Gauss function fit
- Fit the beam size ω , amplitude A and beam position x_0
- Use all data points inside the dashed lines for the fit because outside is a huge fluctuation due to low signal

Absorber Measurements

- $Z_0 = 3191 \pm 78 \text{ mm}, \omega_0 = 78 \pm 3 \text{ mm}$ To Do:
- Measure fluctuations dominated by systematic
- Determine systematic errors: hysteresis, reproducibility
- Extend z scan range to see the beam shape
- Improve the stability of the beadpull

04.07.2025

9

Summary & Outlook

- Beam waist position $Z_0 = 3191 \pm 78$ mm, beam waist $\omega_0 = 78 \pm 3$ mm
- Measure the beam waist on a longer distance (1000 mm instead of 150 mm)

Backup

- Errors for each data point from measuring 5 times to left and 5 times to the right
- Line fit a*x+b
- A = -0.018
- B = 0.499

