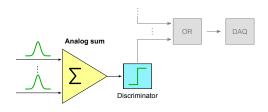
Performance of the prototype of an improved Sum-Trigger for the MAGIC telescopes

D. Haefner, T. Schweizer, M. Shayduk, R. Mirzoyan, M. Teshima

Dp. Dg≥±t

Max-Planck-Institute for Physics Munich, Germany

Frühjahrstagung 28. März - 1. April 2011, Karlsruhe


The MAGIC telescopes

- ▶ Located on the Canary Island La Palma at 2230m above sea level
- ▶ Detect faint Cherenkov flashes induced by cosmic particles
- ► Two telescopes, largest IACTs worldwide with two 17m reflectors
- ► Highly sensitive PMT cameras (577 and 1039 pixels)
- ▶ Advantage: low detection energy threshold (\geq 55 GeV)
- ► Analog Sum-Trigger (since 2008) reduced threshold to 25 GeV
 - ightarrow detection of pulsed γ -rays from Crab pulsar (SCIENCE publication)

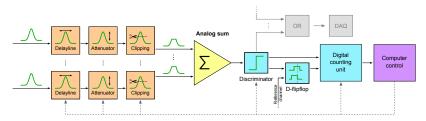
Principle of the Sum-Trigger

- Analog sum of the signals from adjacent pixels (patch) is produced
- Discriminator is applied to the summed analog signal

- → Topological and timing constraints are applied to the signals:
 - ► Cherenkov light cones produce extended images on camera
 - Duration of such a Cherenkov flash: 2-6 ns
- → Takes into account small signals below the single channel discriminator threshold (standard trigger)
- → Charge integration of larger area (> 4NN) increases "signal to noise ratio" compared to standard trigger

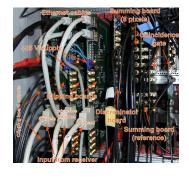
$$U_{NoiseSum} = \sqrt{U_{NoiseSrc1}^2 + U_{NoiseSrc2}^2 + \dots + U_{NoiseSrcN}^2}$$

New analog Sum-Trigger II


Main problem:

- Camera (PMTs), electronics, and optical fibers introduce differing delays and gains among channels, which can change with time
- ► For a correct "pile up" of signals in sum, precise timing is required

Gains and delays of current Sum-Trigger are only manually adjustable \rightarrow intensive maintenance from experts is required


⇒ Prototype of a *new* Sum-Trigger was developed with completely automated equalization of delay and gain per channel

Basic principle:

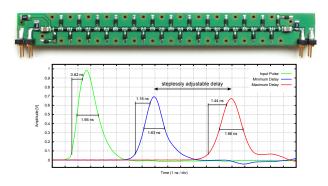
Sum-Trigger II prototype

- ► Fully functional prototype has been designed and built in 2010
- ► Prototype was tested in August 2010, temporarily installed in MAGIC I
- → New concept of automatic calibration works satisfactorily
- → Roughly estimated trigger performance agrees with current Sum-Trigger

Clip-board

Sum-board (from old system)

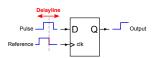
Discriminator-board

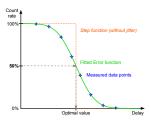


Computer-controlboard

Delay line

Adjustable analog delay line prototype

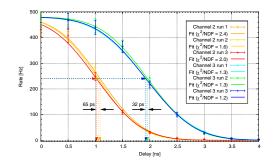


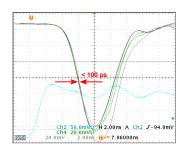

This first prototype module features:

- ► Cutoff frequency: > 420 MHz @ min. delay, 300 MHz @ max. delay
- ightharpoonup Total span of delay: 6 ns. If less required ightharpoonup higher bandwidth
- **Temperature stability**: $\ll 10$ ps between 5°C and 30°C
- ullet Precision: \ll 10 ps, no hysteresis, depends solely on applied voltage
- ▶ Tolerance: no differences in delay or attenuation among modules

Calibration process: Delay adjustment

- Calibration pulses synchronously illuminate all camera pixels
- One single channel is time reference to which ALL other channels are aligned
- Only the channel which is to be measured is ON, all others are disabled (OpAmps OFF)
- Ultra-fast ECL D-flipflop is used to tell whether pulse is earlier than reference pulse
- Rate of HIGH output signals of D-flipflop is recorded for various delay settings
 - ▶ Ideal case: no jitter → step function
 - ► Real case: delay jitter
 - Step function "smoothes out" → shape of Error function
- ► Inflection point (50% Rate) represents optimal value
- → Equal delays (rising edges coincide)

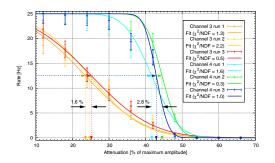


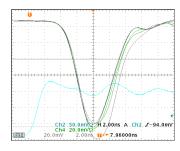


Calibration process: Delay adjustment

Precision of delay adjustment:

- Variance of "optimal" values of repeated calibration runs on same channel:
 - < 70 ps
- Largest difference in delay (rising edges) among all 8 prototype channels:
 - $< 100 \ \mathrm{ps}$

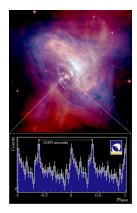



- ightarrow Too precise: Required precision only pprox 250 ps
- → Width of measurement steps can be increased
- → Less counting processes required
- → Calibration procedure can be speeded up

Calibration process: Gain adjustment

Gain flat-fielding identical, except:

- Instead of D-flipflop a discriminator compares signal amplitude with reference voltage
- Rate of discriminator output is recorded for various attenuation levels
- \rightarrow Amplitude jitter \rightarrow Error function



- ightarrow Too precise: < 5% possible, but only pprox 10% required
- ightarrow Width of measurement steps can be increased
- ightarrow Calibration procedure can be speeded up

Conclusion

- ightharpoonup Current analog Sum-Trigger: Great success in detecting pulsed γ -rays from Crab pulsar
- Indispensable for observation of pulsars and distant AGNs and GRBs (EBL absorption)
- New Sum-Trigger will
 - facilitate setup, calibration and maintenance
 - further reduce energy threshold below 25 GeV (more precise "stacking" of pulses in sum)
- Using rate scans for calibration enables
 - simple, robust, and cost-effective circuits
 - high precision in adjustment
- Adjustable analog delay line allows
 - adjustment of delays in many fields of application
 - cost-effective designs
- Outlook for next generation Cherenkov Telescope Array (CTA)
 - Sum-Trigger can help to reduce total cost
 - meets requirements for low power consumption and low heat emission

