Techniken zur Squarkmassenbestimmung an einem zukünftigen e⁺e⁻ Linearbeschleuniger

D. Dannheim¹, A. Lucaci-Timoce¹, P. Schade^{1,2}, F. Simon³, <u>L. Weuste³</u> ¹CERN, Genf ²DESY, Hamburg ³MPI für Physik & Excellence Cluster "Universe", München

Gliederung

Motivation

- Der Compact Linear Collider
- Squarkproduktion bei CLIC
- Untergrund
- Massenmesstechniken
- Einfluss des Jet-Algorithmus

Squarks: Die Domäne von Multi-TeV Beschleunigern

Supersymmetrie ist eine mögliche Erweiterung des Standardmodells

− postuliert Superpartner zu jedem SM - Teilchen: u.a.: Quark → Squark_{l,r}

Typisch für Squarks in mSugra SUSY Modellen:

- Squarks schwer → Für Paarproduktion mehr als ITeV nötig
- u/d/c/s Squarks: rechts- und linkshändige Squarks mixen nicht zu neuem Masseneigenzuständen

- typ. keine Unterscheidung 1. / 2. Generation:
 - up / charm Squarks haben gleiche Masse
 - down / strange Squarks haben gleiche Masse
- aber leichte Massendifferenz up / down
- Massendifferenz links- / rechtshändige Squarks

Präzise Squark-Massenmessungen sind wichtiger Bestandteil der SUSY Spektroskopie!

Der "Compact Linear Collider"

- e⁺e⁻ Beschleuniger
- Wenig Untergrund
- Definierter Anfangszustand
- Gut geeignet f
 ür Pr
 äzisionsmessungen

Der "Compact Linear Collider"

- e⁺e⁻ Beschleuniger
- Wenig Untergrund
- Definierter Anfangszustand
- Gut geeignet f
 ür Pr
 äzisionsmessungen

Squarkmassenbestimmung als CLIC CDR Benchmark

- optimiertes SUSY Modell: Neutralino ist LSP
- rechtshändige Squarks: "mostly bino"
 - \blacktriangleright nur schwacher Zerfall: $\tilde{q}_R \xrightarrow{99.7\%} q + \chi_1^0$

m_0	=	$303 {\rm GeV}$		
A_0	=	$-750 \mathrm{GeV}$	particle	mass [GeV]
μ	>	0	χ_1^0	328.3
aneta	=	24	$ ilde{u}_R, ilde{c}_R$	1125.7
M_1	=	$780 \mathrm{GeV}$	$\tilde{d}_{B}, \tilde{s}_{B}$	1116.1
M_2	=	$940 \mathrm{GeV}$	\tilde{a}_{P}	1239.7
M_3	=	$540 \mathrm{GeV}$	ЭN	

Untergrund: $\gamma\gamma \rightarrow$ Hadron

Zusätzlich: Untergrund pro Bunchcrossing BX

- verursacht durch γγ→Hadron "pile-up"
- kein "pile-up" von "echten" Events
- kein "underlying event"
- dominiert in Vorwärtsbereich
- bei 60BX: zusätzlich 1.4TeV
- Reduktion durch komplizierte Cuts auf 200GeV

Beamstrahlung

60BX vor Reduktion I.4 TeV

nach Reduktion 0.2 TeV

Lars Weuste (weuste@mpp.mpg.de) - MPP

Massenmesstechnik: Box-Verteilung

Massenmesstechnik: Mc

$$M_C^2 = (E_1 + E_2)^2 - (\vec{p_1} - \vec{p_2})^2$$

= $2(E_1 E_2 + \vec{p_1}^2 \vec{p_2}^2)$

Basiert auf Modifikation der invarianten Masse

LHC benutzt transversale Variante

Berechnung

- ohne Kollisionsenergie
 - Geringe Abhängigkeit vom beam-energy Spektrum
- Benötigt Neutralinomasse
- Maximum an oberer Kante
- Geeignet f
 ür Messungen mit geringer Statistik

Lars Weuste (weuste@mpp.mpg.de)

- MPP

- Simple Dreiecks Form
- Vermutlich einfach zu fitten

$$M_{C,\max} = \frac{m_{\tilde{q}}^2 - m_{\chi}^2}{m_{\tilde{q}}}$$

Massenmesstechnik: minimale Squarkmasse

Berechnung der kinematisch minimal möglichen Squarkmasse pro Event, mittels

- der gemessenen Jet 3er Impulse (Quarks massenlos)
- der Neutralino Masse (Annahme: bekannte durch andere Messungen)

Einfluss von $\gamma\gamma \rightarrow$ Hadron auf Box/Mc

- Generatorlevelstudie
- Nur Signal
- Überlagerung von $\gamma\gamma \rightarrow$ Hadron
- Jet-Finding
- Simulation des Detektors via "4-Vector-Smearing" der Jets
- Verschiebung der Verteilung

 M_C/Box nicht stabil ggü. $\gamma\gamma \rightarrow$ Hadron !

Einfluss von $\gamma\gamma \rightarrow$ Hadron auf min m_{squark}

- Generatorlevelstudie
- Nur Signal
- Überlagerung von $\gamma\gamma \rightarrow$ Hadron
- Jet-Finding
- Simulation des Detektors via "4-Vector-Smearing" der Jets
- Berechnung hat Kollisionsenergie als Eingabe
- $\gamma\gamma \rightarrow$ Hadron Überlagerung verletzt Annahme der Energieerhaltung
 - Berechnung schlägt in manchen Fällen fehl
 - ➡ obere Kante bleibt jedoch erhalten

Jet Algorithmen

- Jet Algorithmen: Rekombination der Sekundärteilchen
- Ziel: Messung des Ursprungsteilchens (Quark)
- Beispiel: kt Algorithmus (exklusiv)
- Berechne paarweise Distanz aller Teilchen
- Vereinige Teilchen mit kleinster Distanz
 - Ausnahme: Lösche Teilchen nahe der Beamachse
- Wiederhole, bis nur noch N "Teilchen" = Jets übrig

Jet Algorithmen

Jet Algorithmen: Rekombination der Sekundärteilchen

- Ziel: Messung des Ursprungsteilchens (Quark)
- Beispiel: k_t Algorithmus (exklusiv)
- Berechne paarweise Distanz aller Teilchen
- Vereinige Teilchen mit kleinster Distanz
 - Ausnahme: Lösche Teilchen nahe der Beamachse
- Wiederhole, bis nur noch N "Teilchen" = Jets übrig

Name	Distanz \propto	Anmerkung	
ee kt	$\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$	θ_{ij} : Zwischenwinkel	
hadron kt	$\min(k_{t,i}^2, k_{t,i}^2) (\phi_i - \phi_j) (\eta_i - \eta_j)$	$\eta: Pseudorapidität$	
	, , , , , , , , , ,	,	n=0

Pseudorapidität $\eta \rightarrow \infty$ für $|\cos\theta| \rightarrow I$ \Rightarrow Raum im Vorwärtsbereich wird künstlich "auseinandergezogen" \Rightarrow Wichtig für Hadronbeschleuniger (Boost entlang Beamachse)

 $\theta = 90^{\circ}$

 $\theta = 45$

n=0.88

Jet Algorithmus Vergleich: Etot

- Vergleich: ee-kt und Hadron-kt Algorithmus
- Generatorlevelstudie
- Überlagerung Signal (Squarks) mit γγ→Hadron
- Jet Clustering
- Verschmierung der Jet 4er-Vektoren (Detektoreffekte)

ee-k_t - Algorithmus

hadron-k_t Algorithmus

Jet Algorithmus Vergleich: Etot

- Vergleich: ee-kt und Hadron-kt Algorithmus
- Generatorlevelstudie
- Überlagerung Signal (Squarks) mit γγ→Hadron
- Jet Clustering
- Verschmierung der Jet 4er-Vektoren (Detektoreffekte)

Jet Algorithmus Vergleich: Etot

- Vergleich: ee-kt und Hadron-kt Algorithmus
- Generatorlevelstudie
- Überlagerung Signal (Squarks) mit γγ→Hadron
- Jet Clustering
- Verschmierung der Jet 4er-Vektoren (Detektoreffekte)

Jet Algorithmus Vergleich: cos Θ_{Jet1}

Überlagerung von $\gamma\gamma \rightarrow$ Hadron auf Generator Ebene

Jet Algorithmus Vergleich: Mc

Überlagerung von $\gamma\gamma \rightarrow$ Hadron auf Generator Ebene

Jet Algorithmus Vergleich: min msquark

Der hadron-kt Algorithmus nimmt weniger $\gamma\gamma \rightarrow$ Hadron Untergrund auf

Überlagerung von $\gamma\gamma \rightarrow$ Hadron auf Generator Ebene

Zusammenfassung

CLIC CDR Benchmark: Squarkmassenbestimmung

- Hier: Zerfall der rechtshändigen Squarks fast ausschliesslich in Quark und Neutralino
- Sehr generische Signatur
- Massenbestimmung am CLIC mit verschiedenen Observablen:
- Box Verteilung
- minimale Squarkmasse
- modifizierte invariante Masse M_C
 - Empfindlich ggü. γγ→Hadron Untergrund
- Wahl des Jet-Algorithmus beeinflusst Aufnahme von $\gamma\gamma \rightarrow$ Hadron Teilchen
- Hadron k_t Algorithmus

