Bau einer Präzisionsdriftrohrkammer für den Ausbau des ATLAS Myonspektrometers

Philipp Schwegler Bernhard Bittner Jörg Dubbert Matthias Kilgenstein Hubert Kroha Jörg v. Loeben Robert Richter

philipp.schwegler@cern.ch

Max-Planck-Institut für Physik, München

DPG Frühjahrstagung 2011

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Einleitung und Motivation

- Geplante Steigerung der LHC-Luminosität um den Faktor 5 gegenüber der nominellen Luminosität von 1 \times 10 $^{34}\,cm^{-2}s^{-1}$
- Rate der Neutronen und γ's aus Sekundärreaktionen im ATLAS-Myonspektrometer steigt proportional mit der Luminosität
- → Detektoren der innersten Lage in Vorwärtsrichtung müssen durch neue hochratenfähige Detektoren ersetzt werden

Unser Ansatz:

Neue Driftrohrkammern mit 15 mm Rohrdurchmesser nach Vorbild der aktuellen ATLAS MDT-Kammern mit 30 mm Rohrdurchmesser

Die ATLAS MDT-Kammern

MDT-Kammerparameter:

- Gasmischung: Ar/CO₂ (93/7) bei 3 bar
- Max. Driftzeit: ≈ 700 ns
- Einzelrohrauflösung: 80 μm
- Spurrekonstruktionsgenauigkeit: 35 µm

Der ATLAS-Detektor

Aufbau der Prototypkammer

- Kammergröße \approx 1,1 m \times 1 m
- Trapezform für Einbau im inneren *"Small Wheel"*-Bereich
- 3 Rohrlängen: 560, 760 und 960 mm
- 2×8 Rohrlagen
- insgesamt 1152 Rohre
- neue Auslese- und Hochspannungsverteilerkarten
- aktive Ausleseelektronik (mezzanine boards, CSMs) von bisherigen ATLAS-MDT-Kammern, neue in Entwicklung

MPI Reinraum

Komplette Rohr- und Kammermontage im Reinraum

Halbautomatische Bedrahtungsmaschine für zukünftige Rohrproduktion

Herstellung der Driftrohre

Draht mit Luftstrom einfädeln

Draht abschneiden

Draht durch Endstopfen fädeln

Crimphülse auffädeln

Rohr auf Endstopfen crimpen

Draht spannen und crimpen

Herstellung der Driftrohre

- 3 Arbeitskräfte
- 1200 Rohre in 3 Wochen
- bis zu 100 Rohre pro Tag

Tests der Driftrohre

Testkriterien:

- Drahtspannung: $350 \pm 15 \, g$
- Leckrate:
 - $< 10^{-5}\,mbarl/s$
- Leckstrom:
 < 5 nA bei 3015 V (nominell 2730 V)

Drahtspannungstest:

Lecktest:

Hochspannungstest:

Tests der Driftrohre

Test	Ausschuss (%)
Drahtspannung	6.3
Dichtigkeit	0.0
Hochspannung	0.4
insgesamt	7.3 ¹

Draht wurde nicht vorgespannt, Spannung lässt leicht nach.

¹ im späteren Verlauf \approx 1 %

Kleben der Multilagen

Präzisionskämme zum Einlegen der Rohre

Einlegen der ersten Rohrlage

Kleben der zweiten Rohrlage

Ankleben des Aufhängerahmens

Aufflangeranniens

Fertig geklebte Kammer

Eine komplette Multilage (8 Rohrlagen) kann an einem Tag geklebt werden! Drahtpositionierungsgenauigkeit: 20 µm

Modulares Gasverteilungssystem

- Verbindungen zwischen den Rohrlagen dicht
- Verbindungen entlang der Rohrelagen problematisch

Erster Test mit neuer Gasverteilungsschiene erfolgreich

Auslese- und Hochspannungsverteilerkarten

 $4 \times$ höhere Packungsdichte \Rightarrow dreidimensionaler Platinenaufbau

Auslese- und Hochspannungsverteilerkarten

Zusammenfassung & Ausblick

- Eine voll funktionsfähige Prototypkammer bestehend aus 1152 Driftrohren mit 15 mm Durchmesser wurde gebaut.
- Neue Auslese- und Hochspannungsverteilerkarten sowie ein modulares Gasverteilungssystem f
 ür die h
 öhere Packungsdichte wurden gebaut und getestet.
- Genaue Drahtpositionsmessung der Prototypkammer in einem Höhenstrahlteststand folgt im April.
- Vier neue Kammern mit 15 mm Driftrohren werden bis 2012 gebaut und zur Erhöhung der Detektorakzeptanz in ATLAS eingebaut.

Fragen!?

Extra Folie

Zeichnung Prototyp-Kammer

Extra Folie

MDT Endstopfen

