Test einer schnellen, hochauflösenden Myondriftrohrkammer bei hohen γ -Bestrahlungsraten

Philipp Schwegler¹ Bernhard Bittner¹ Jörg Dubbert¹ Matthias Kilgenstein¹ Oliver Kortner¹ Hubert Kroha¹ Jörg v. Loeben¹ Robert Richter¹ Stefanie Adomeit² Otmar Biebel² Ralf Hertenberger²

Stefanie Adomeit² Otmar Biebel² Ralf Hertenberger² Andre Zibell²

philipp.schwegler@cern.ch

¹Max-Planck-Institut für Physik, München

²Ludwig-Maximilians-Universität, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG Frühjahrstagung 2011

LHC Upgrade Zeitplan

Höhere Peak-Luminositäten führen auch zu deutlich erhöhter Untergrundstrahlung. Wir müssen dafür Sorge tragen, dass alle Bereiche des Detektors in dieser neuen Umgebung einwandfrei funktionieren.

Raten im ATLAS Myonspektrometer

- Erhöhung der LHC-Luminosität bis 2021 auf den fünffachen nominellen Wert von $\mathcal{L}=1\cdot 10^{34}\,\text{cm}^{-2}\text{s}^{-1}$
- Untergrundtrefferrate steigt voraussichtilich proportional mit ${\cal L}$

 \Rightarrow Rate in innerer Vorwärtsrichtung *(Small Wheel)* übersteigt die Ratenfähigkeit des Detektors

Erwartete Rate in Hz/cm² bei nomineller LHC Luminosität:

Raten im ATLAS Myonspektrometer

- Erhöhung der LHC-Luminosität bis 2021 auf den fünffachen nominellen Wert von $\mathcal{L}=1\cdot 10^{34}\,\text{cm}^{-2}\text{s}^{-1}$
- $\bullet~$ Untergrundtrefferrate steigt voraussichtilich proportional mit ${\cal L}$

 \Rightarrow Rate in innerer Vorwärtsrichtung *(Small Wheel)* übersteigt die Ratenfähigkeit des Detektors

Erwartete Rate in Hz/cm^2 bei 5× nomineller LHC Luminosität:

Problem bei hohen Untergrundraten

Treffer von sekundären Neutronen und γ 's aus Reaktionen in Abschirmung und anderen Detektorkomponenten verschlechtern Nachweiseffizienz und Ortsauflösung.

Detektorbelegung = Trefferrate \times max. Driftzeit (\approx 700 ns)

Reduzierter Driftrohrdurchmesser

Halbieren des Rohrdurchmessers von 30 auf 15 mm:

- 7× geringere Detektorbelegung
 - kürzere maximale Driftzeit (3.5)
 - Rohrdurchmesser (2)
- mehr Rohrlagen im gleichen Volumen möglich ⇒ bessere Spurrekonstruktionseffizienz

Hochratentests

CERN Gamma Irradiation Facility (GIF)

Ziel: Messung von Ortsauflösung und Einzelrohreffizienz in Abhängigkeit der Untergrundtrefferrate.

Problem:

- $\bullet~$ Kein Myonstrahl in der GIF $\rightarrow~$ Messung mit kosmischen Myonen
- Ortsauflösung dominiert durch Vielfachstreuung und Unsicherheiten auf die Spurextrapolation

Hochratentests

Auswertung

- Raten teilweise zu hoch f
 ür Ausleseelektronik (24 Rohre teilen sich einen TDC-Chip)
- Abschalten von einem Teil der Kanäle erhöht die maximal mögliche Rate der übrigen Rohre.

Hochratentests

Ergebnisse

- Effizienzmessung deckt sich mit den Erwartungen aus Simulation und Erfahrung mit den 30 mm Rohren
- Messung der Ortsauflösung erfordert bessere Triggerabdeckung und genauere Spurrekonstruktion

Ausblick

Neuer Aufbau für Messperiode im Mai 2011

- Höhere Myonrate durch besser Triggerabdeckung
- Genauere Spurrekonstruktion f
 ür Auflösungsmessung mit zwei abgeschirmten Bereichen und Interpolation zu den bestrahlten Rohren

Zusammenfassung

- Steigerung der LHC-Luminosität um den Faktor 5 gegenüber der nominellen Luminosität bis 2021 geplant
- Detektoren der innersten Lage in Vorwärtsrichtung des ATLAS-Myonspektrometers müssen durch neue hochratenfähige Detektoren ersetzt werden (T 73.1)
- Effizienz und Ortsauflösung der 15 mm Driftrohrkammern wurde ohne Untergrundstrahlung gemessen und deckt sich mit der Erwartung (T 70.1)
- Effizienz bis zu den höchsten erwarteten Untergrundraten nach geplanter Luminositätserhöhung gemessen
- Messung der Ortsauflösung bei hohen Untergrundraten in der GIF geplant für Mai 2011

Fragen!?

Extra Folie

Zeichnung Prototyp-Kammer

Extra Folie

MDT Endstopfen

