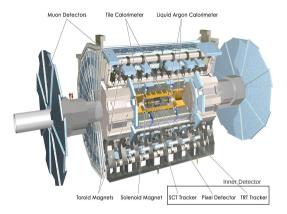
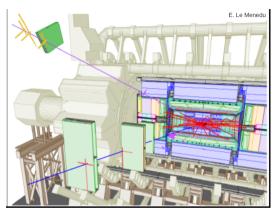
Measurement of the performance of the muon reconstruction in ATLAS

M. Vanadia, D. Capriotti; supervised by: O. Kortner, H. Kroha


Max-Planck-Institut für Physik


March 23, 2011- DPG Conference

Reconstruction strategies

Combined

- Use ID+MS
- Best momentum resolution

Standalone

- Use MS only
- Extend acceptance to $|\eta| < 2.7$

Segment tagged

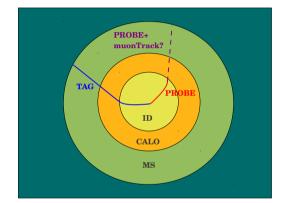
- ID track tagged from MS
- Increase efficiency in poorly instrumented regions

Efficiency measurement: the Tag and Probe method

To measure muon reconstruction efficiency, dimuons decay of Z, J/ψ are used. The total reconstruction efficiency can be factorized as $\epsilon^{reco} = \epsilon^{MS} \epsilon^{comb} \epsilon^{ID}$ Its measurement is performed in two steps, using the Tag and Probe method:

- One combined muon: TAG
- One track on the other side of the detector: PROBE

 \rightarrow Search for a reconstructed muon track associated to the probe: MATCH


$$\epsilon = \frac{N_{Probes}^{Matched}}{N_{Probes}}$$

measure of $\epsilon^{MS} \epsilon^{comb}$

- Inner Detector track as probe
- Combined track as match

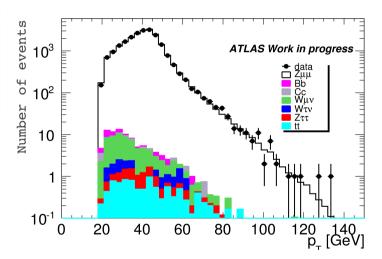
measure of ϵ^{ID}

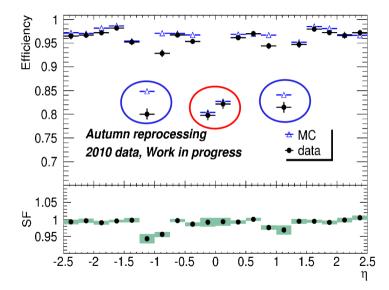
- Muon Spectrometer track as probe
- Inner Detector track as match

An example, with Inner Detector tracks used as probe and combined tracks as matching tracks

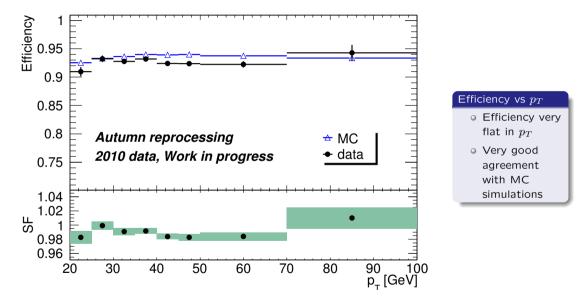
First step: measure $\epsilon^{MS}\epsilon^{comb}$ using Inner Detector tracks as probe:

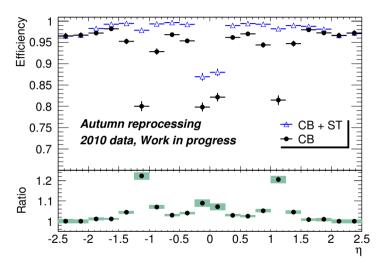
- Vertex with 3+ tracks (avoid cosmic background)
- TAG Combined muon
 - $p_T>20~GeV$, $|\eta|<2.4$
 - Muon fired trigger (to avoid biased efficiency)


• Isolation cut:
$$\frac{\sum p_T^{\Delta R < 0.4}}{p_T^{\mu}} < 0.2$$


- PROBE Inner Detector track
 - From same vertex as tag
 - Opposite charge
 - $p_T > 20~GeV$, $|\eta| < 2.5$
 - Isolation cut: $\frac{\sum p_T^{\Delta R < 0.4}}{p_T^{IDtrk}} < 0.2$
 - Invariant mass: $|m_{\mu\mu} m_Z| < 10 \ GeV$
 - Azimuthal separation of tag and probe tracks, $|\Delta \phi|>2$
- MATCH Combined Track associated to Probe
 - $\Delta R < 0.1$ between probe track and reconstructed muon

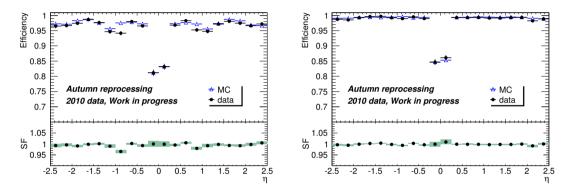
Sample	Contribute
$Z \longrightarrow \mu \mu$	99.62%
$W \longrightarrow \mu \nu$	0.21%
$b\overline{b}$	0.059%
$t\overline{t}$	0.042%
$W \longrightarrow \tau \nu$	0.029%
$Z \longrightarrow \tau \tau$	0.025%
$c\overline{c}$	0.021%


- High purity sample of $Z \longrightarrow \mu \mu$ is selected
- Small background contribution, most of it at low p_T
- Good data-MC simulation agreement



Efficiency vs η

- Data/MC ratio (Scale Factor, SF) flat and compatible with 1
- $|\eta| \approx 0$ Acceptance gap to allow space for services
- $|\eta| \approx 1.1$ Region with not enough chambers to provide momentum measurement in the Muon Spectrometer
- Inefficiency in those regions can be recovered with different reconstruction strategies

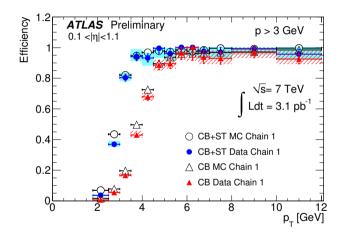


Efficiency recovery with Segment Tagged muons

- Adding Segment Tagged (ST) muons to Combined (CB) muons allow for a recovery of the efficiency in the poorly instrumented regions
- Full recovery around $|\eta|\approx 1.1$
- Partial recovery around $|\eta|\approx 0$
- CB+ST muons are the ones that will be used in physics analysis on 2010 and 2011 data

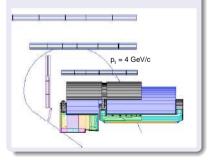
Efficiency with different muon tightness definition

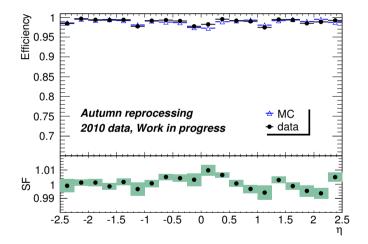
Both plots show Combined + Segment Tagged muons.


Tighter definition of muons

- High efficiency in the whole detector
- Very good agreement with MC

Looser definition of muons


- Very high efficiency in the whole detector
- Perfect agreement with MC
- Efficiency flat in the whole detector (apart from acceptance gap at $\eta \approx 0)$


Results on Combined Muons using $J/\Psi \longrightarrow \mu\mu$ events

Efficiency at low p_T

- To study efficiency at low p_T , $J/\Psi \longrightarrow \mu \mu$ is used
- Allow for a measurement of the efficiency turn on curve
- Adding Segment Tagged muons to the Combined rises the efficiency especially for very low p_T muons

Inner Detector efficiency

- ${\circ}$ Average efficiency, $99.1\%\pm 0.1\%$
- Data/MC ratio compatible with 1 within less than 1%

- $\, \circ \,$ The muon efficiency was measured on data using the Tag and Probe method on dimuons decay of Z and J/Ψ
- Muons can be identified down to $p_T \approx 4~GeV$
- Constant efficiency for $p_T > 6~GeV$: $97.2\% \pm 0.2\%$
- Data and MC simulation in agreement between statistical error