Production of heavy quark jets in association with weak gauge bosons

M. Vanadia, J. Bronner; supervised by: O. Kortner, S. Kortner, H. Kroha

Max-Planck-Institut für Physik

March 24, 2011- DPG Conference

Motivation for W + bjets study

Important for SM and beyond

- Verification of proton parton density function
- Important BG for Higgs and Top physics
- BG for rare processes

CDF results

Big discrepancy between CDF results and NLO theoretical calculation $\sigma_{NLO}^{th} = 1.22 \pm 0.14$ $\sigma_{CDF} \times BR = 2.74 \pm 0.27 \pm 0.42$ See arXiv:0909.1505

- Baseline analysis for W + bjets analysis uses secondary vertex based tagging of b jets
- The selection for this analysis and the impact of background will be shown
- Alternative to cross check the baseline analysis: b tagging using soft muons
- Main topic of the talk: preparation of the muon p_T^{rel} method for the alternative analysis

Subdetectors

- Inner Detector (solenoidal field)
 - Silicon tracker up to $|\eta| < 2.5$

Calorimeters

- \bullet EM up to $|\eta| < 3.2$
 - Liquid Argon sampling calorimeter
- Hadronic up to $|\eta| < 4.9$
 - Tile sampling calorimeter
 - Liquid Argon Calorimeter (forward)
- Muon Spectrometer (toroidal field)
 - Tracking up to $|\eta| < 2.7$
 - Trigger up to $|\eta| < 2.4$

W + b jets selection

Final state: $W + bjet(s) \longrightarrow \mu\nu + bjet(s)$

W selection

- Vertex with 3+ tracks (avoid cosmic background)
- Muon trigger requested
- MUON CUTS:
 - Combined muon (ID+MS track)
 - Exactly one isolated muon with $p_T > 20~GeV$, $|\eta| < 2.4$
 - Isolation: $\frac{\sum p_T^{\Delta R < 0.2}}{p_T^{\mu}} < 0.1$
- Jets at EM scale are used
- Jet Cleaning: remove events with poorly reconstructed jets (needed for E_T^{miss} calculation)
- $E_T^{miss} > 25 \ GeV$
- $m_T > 40 \ GeV$

W + jets selection

 ${}_{\odot} \geq 1 jet:$ well reconstructed, $p_T > 30~GeV,~|y| < 4.5,$ boson decay lepton overlap removal

W + b jets selection

- $\,\circ\,$ Baseline analysis: ≥ 1 b jet, identified by secondary vertex b tagging.
- $\,\circ\,$ Alternative analysis with muons: 1 muon with $p_T>4~GeV$ inside a jet

Results with the selection on Pythia MC simulations

In W+jets events

- Fraction of b jets = 0.46%
- Fraction of jets tagged as b jets = 1.4%
- Fraction of jets with a muon inside = 0.82%
- Fraction of b jets events with a muon inside = 7.5%

Conclusions

- 15 times more statistics needed for alternative analysis than for baseline analysis
- Alternative analysis only for 2011 data $(O(1 \ fb^{-1}) \text{ expcted})$

The p_T^{rel} templates technique

 p_T^{rel} is defind for muons inside jets as $p_T^{rel} = \overrightarrow{p_\mu} \perp \overrightarrow{p_{rel}}$ p_T^{rel} spectrum is different for muons from b-decay and muons from c-decay or inside light jets

Distinction between b and non-b jets possible on statistical basis fitting a linear combination of the b and non-b p_T^{rel} templates to the p_T^{rel} distribution

 p_T^{rel} templates from MC not necessarily reliable enough, preference for an experimental determination of p_T^{rel} templates

- ${\ \circ \ }$ Use dijet events for the determination of the p_T^{rel} templates
- Dijet event selection:
 - Muon trigger for the event
 - 2 well reconstructed highest p_T jets with $p_T > 25 \ GeV$
 - Reconstructed muon with $p_T > 4 \ GeV$ inside one jet
- Selection to get a b enhanced jet sample:
 - The jet without the muon is b tagged using secondary vertex information
 - Muon impact parameter significance $\frac{d_0}{\sigma(d_0)} > 5$
- Selection to get a b depleted jet sample:
 - The jet without the muon is not b tagged by the secondary vertex b tagger
 - Muon impact parameter significance $\frac{d_0}{\sigma(d_0)} < 1.3$

Test of data driven method on MC

- Common template used for light and c jets
- Very good agreement for b jets
- Systematic effect in the light+c template
- Contamination can be reduced with the ongoing improvement in the selection
- Any residual effect will be accounted as systematic error

First results with data driven method

- Agreement is reasonable for b jets
- For light+c jets, there is a systematic effect
- It is a known effect on MC simulations
- Work ongoing on the selection
- Still, there is a good separation between b and non b jets

Application of data driven method on Data and on MC simulation

- W+b jet(s) is an a important and challenging channel; 2010 data collected by ATLAS are enough to perform a first measurement of the cross section
- Baseline analysis uses secondary vertex information for b tagging.
- Cross check using soft muon tagging with p_T^{rel} requires 10 times higher statistics which will be available in 2011.
- Key point for cross check: data driven determination of p_T^{rel} templates.
- First results of data driven templates using dijet events look promising.
- Other possible techniques which use muons inside jets are under investigation: above all, the usage of charge correlation between the W decay muon and muon from c decay in W+c events