Measurement of muon efficiencies for the $Z \to \tau \tau \to \mu \tau_{had}$ cross section measurement

D. Capriotti supervised by: O. Kortner, S. Kortner, H. Kroha

Max-Planck-Institut für Physik Werner Heisenberg Institut Munich, 80805, Germany capriott@mppmu.mpg.de

Karlshrue DPG Meeting, March 21 - 25, 2011

Introduction

 \Rightarrow GOAL: Measure the cross section of the $Z \rightarrow \tau \tau \rightarrow \mu \tau_{had}$ decay

$$\sigma = \frac{N - B}{A_Z C_Z L}$$

N data events, B background events, A_Z acceptance, C_Z efficiency of the selection and L integrated luminosity

- C_Z calculated from signal Monte Carlo \rightarrow need of scale factors to correct Monte Carlo simulation with respect to data
- Muon scale factors for reconstruction, isolation and trigger efficiencies derived from $Z\to\mu\mu$ data using the tag-and-probe method

Muon selection for the $Z \rightarrow \tau \tau \rightarrow \mu \tau_{had}$ analysis

Track reconstruction in ATLAS is performed independently in the inner detector and muon spectrometer.

- ID tracks: tracks reconstructed in the Inner Detector. High efficiency and good momentum resolution
- MS tracks: tracks reconstructed in the Muon Spectrometer. High muon purity: only muons reach the spectrometer
- CB tracks: combination of tracks reconstructed in both detectors

Muon selection for the $Z \to \tau \tau$ analysis:

- ⇒ reconstruction: combined with $p_T \ge 15$ GeV, $|\eta| \le 2.4$, $|z_0| < 10$ mm. Hits requirements on the ID associated track
- ⇒ isolation: use of transverse momentum and transverse energy of particles in $\Delta R < 0.40$ around the muon $(\sum p_T^{ID}/p_T < 0.06$ and $E_T/p_T < 0.06)$
- ⇒ trigger: according to the data periods ($p_T > 10$ GeV for a small fraction of data and $p_T > 13$ GeV for remaining data)

Signal and background of the tag-and-probe method

- Goal: measure muon efficiency (reconstruction, isolation and trigger)
 - \rightarrow combined reconstruction $\epsilon_{rec} = \epsilon_{id} \epsilon_{ms} \epsilon_{comb}$
 - \rightarrow isolation ϵ_{iso}
 - \rightarrow trigger $\epsilon_{trigger}$
- The method:
 - $\rightarrow\,$ select a clean sample of $Z\rightarrow\mu\mu$ events from data
 - $\rightarrow\,$ tight requirement on one muon (tag) and loose criteria on the second muon (probe)
 - $\rightarrow\,$ efficiency of muons measured with respect to the probe

Dataset	NNLO Cross Section [nb]
$Z \to \mu \mu$	0.99 ± 0.05
$Z \to \tau \tau$	0.99 ± 0.05
$W \rightarrow \mu \nu$	10.46 ± 0.52
$W \rightarrow \tau \nu$	10.46 ± 0.52
$b\overline{b}$	$73.9 \cdot 0.5$
$c\bar{c}$	$28.4 \cdot 0.5$
$t\bar{t}$	0.16 ± 0.01

 Table: Signal and background processes for the tag and probe method

Tag and Probe definition

⇒ matching probeMS with the ID Track ($\Delta R < 0.05$) to measure the ID reconstruction efficiency (ϵ_{id}). Not presented in this talk.

- ⇒ matching probeID with Muon (as defined for the $Z \rightarrow \tau \tau$ selection) in $\Delta \mathbf{R} < 0.01$ to measure the MS reconstruction efficiency together with the efficiency of the ID-MS matching for combined tracks ($\epsilon_{ms}\epsilon_{comb}$)
- \Rightarrow matching probe CB-Isolated Muon (as defined for the $Z\to\tau\tau$ selection) to measure the isolation efficiency
- $\Rightarrow\,$ matching probe CB-Triggered Muon (as defined for the $Z\to\tau\tau$ selection) to measure the trigger efficiency

Results: reconstruction efficiency

Dataset	Number probes
$Z \to \mu \mu$	23811
$Z \to \tau \tau$	6
$W \rightarrow \mu \nu$	49
$W \to \tau \nu$	7
$b\overline{b}$	14
$c\bar{c}$	5
$t\bar{t}$	10

- $\bullet\,$ Background less than 1%, present only at low p_T
- Dominant background is $W \to \mu \nu$.

Results: reconstruction efficiency

- Inefficiency in the endcap-barrel transition region and in the feet: missing chambers and not perfect alignment
- Scale factor 0.95 in the transition region: Monte Carlo simulation does not reproduce very well the asymmetric magnetic field and misalignment

INTRODUCTION

Muon selection

TAG AND PROBE METHOD

Efficiencies and Scale Factors

CONCLUSION

Results: isolation efficiency

 \bullet Isolation of muons needed to reject QCD events: $\sum p_T^{ID}/p_T < 0.06$ and $E_T/p_T < 0.06$

Dataset	Number probes
$Z \rightarrow \mu \mu$	23927
$Z \to \tau \tau$	2
$W \rightarrow \mu \nu$	4
$W \rightarrow \tau \nu$	< 0.4
$b\overline{b}$	23
$c\bar{c}$	3
$tar{t}$	6

Table: Signal and background processes for the tag and probe method

- Background to $Z \to \mu \mu$ sample additionally reduced (< 0.2%) by the request of 2 combined muons
- Monte Carlo simulation reproduces very well the efficiency curve calculated from data

Results: trigger efficiency

- Trigger threshold: $p_T > 13$ GeV at event filter
- Efficiency: ≈ 0.95 in end-cap (full coverage) and ≈ 0.80 in barrel (not fully covered)
- Scale factors: flat p_T distribution, more pronounced fluctuations on η
- η dependent scale factors will be used for the cross section measurement

- A_Z and C_Z factors for $Z \to \tau \tau \to \mu \tau_{had}$ cross section measurement obtained by Monte Carlo simulation
- Selection efficiency depends on reconstruction, isolation and trigger muon efficiencies, measured on data with $Z \to \mu\mu$ events
- The study presented shows good agreement between data and Monte Carlo simulation for muon efficiencies: scale factors calculated to take into account differences