DPG 2011

Measurements of the CKM angles at the B Factories

Jeremy Dalseno

Max-Planck-Institut für Physik
Excellence Cluster Universe
jdalseno [@] mpp.mpg.de
31 March 2011

Outline

Motivation

Principles of the Measurements

Measurements of ϕ_1

Measurements of ϕ_2

Measurements of ϕ_3

Prospects at the Super Flavour Factories

Measurement Principles

 $B\bar{B}$ pairs produced in the reaction $e^+e^-\to \Upsilon(4S)\to B\bar{B}$

The Υ resonances are $b\bar{b}$ bound states

 $\Upsilon(4S)$ is the first resonance just above the $B\bar{B}$ production threshold

Only $B\bar{B}$ pairs are produced, and are pprox at rest in the $\Upsilon(4S)$ frame

In addition, the $B\bar{B}$ pairs are correlated (produced and evolve with opposite flavour)

This makes B flavour identification (B^0 or \bar{B}^0) possible which is vital for CP measurements

Very convenient experimental environment

Measurement Principles

Time measurements are essential to finding CP violation in B decays Matter (B^0) and anti-matter $(\bar B^0)$ can have different time evolution But average time difference between $B\bar B$ decays is $\sim 1~{\rm ps}$

Measurement Principles

Use asymmetric e^+e^- beams to produce $\Upsilon(4S)$ with a Lorentz boost

Boost increases mean separation of $B\bar{B}$ pairs to something we can measure

BB pairs almost at rest in CMS, Δt accessed through separation measurement in 1D

Precise vertex measurement is the key to acccessing ${\cal CP}$ violation in ${\cal B}$ decays

CP Measurement

Two types of ${\cal CP}$ violation can be measured from the data

Direct ${\cal CP}$ violation

Different decay rates

Mixing-induced (Indirect) CP violation

Arises from an interference between $B^0 - \bar{B}^0$ mixing and the final state Feynman Diagram

CP Violation in Δt

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right) \right]$$

$$q = +1(-1)$$
 for $B^0(\bar{B}^0)$

If no CP violation, Δt distributions are identical

$$(\mathcal{A}_{CP}, \mathcal{S}_{CP}) = (1, 0)$$

$$(\mathcal{A}_{CP}, \mathcal{S}_{CP}) = (0, 1)$$

Need Δt to see \mathcal{S}_{CP}

KEKB Accelerator

Asymmetric energy $e^+e^ (3.5~{\rm on~8~GeV})$ collider $B\bar{B}$ separation increased to $\sim 200~\mu{\rm m}$ World record peak luminosity $2.1\times 10^{34}~{\rm cm^{-2}s^{-1}}$ Largest sample of $772\times 10^6~B\bar{B}$ pairs

Luminosity at B factories

Belle Detector

Silicon Vertex Detector (SVD)

Precision vertexing

Central Drift Chamber (CDC)

Tracking, p measurement, particle ID

Aerogel Čerenkov Counter (ACC)

High momentum particle ID

Time of Flight Counter (TOF)

Low momentum particle ID

Electromagnetic Calorimeter (ECL)

 e, γ ID

 K_L^0 and Muon Detector (KLM)

Theoretically clean, relatively free from penguins

Experimentally clean, relatively free from background

$$\lambda_{CP} = \left(\frac{q}{p}\right)_{B^0} \left(\frac{\overline{A}_f}{A_f}\right) \left(\frac{q}{p}\right)_{K^0}$$

$$= \frac{V_{td}V_{tb}^*}{V_{td}^*V_{tb}} \frac{V_{cb}V_{cs}^*}{V_{cb}^*V_{cs}} \frac{V_{cs}^*V_{cd}^*}{V_{cs}^*V_{cd}}$$

$$= e^{-i2\phi_1}$$

10

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right) \right]$$

For tree amplitude,

$$\mathcal{A}_{CP} \equiv \frac{|\lambda_{CP}|^2 - 1}{|\lambda_{CP}|^2 + 1} = 0, \qquad \mathcal{S}_{CP} \equiv \frac{2\Im(\lambda_{CP})}{|\lambda_{CP}|^2 + 1} = \sin 2\phi_1$$

Important to note that measured \mathcal{S}_{CP} is not strictly $\sin 2\phi_1$ Some penguin amplitudes carry a different weak phase Non-zero \mathcal{A}_{CP} possible and \mathcal{S}_{CP} shifted from $\sin 2\phi_1$

CP violation in the B sector first seen in $B^0 \to J/\psi K_S^0$

Final results from the B factories

BaBar, PRD 79 072009 (2009)

$$S_{CP} = 0.691 \pm 0.031$$

Belle, Moriond EW (2011)

$$S_{CP} = 0.671 \pm 0.029$$

The Super Flavour Factories will push the uncertainty down to 1%

World average $\sin 2\phi_1$ from the B factories

Measured $\sin 2\phi_1$ gives 2 solutions for ϕ_1

Ambiguity resolved by measuring $\cos 2\phi_1$

We (Martin Ritter :P) will talk about $B^0 \to D^{*+}D^{*-}K^0_S$ at DPG 2012

Sensitive to ϕ_1 , just like $b \to c\bar{c}s$

For tree amplitude, expect $\mathcal{A}_{CP}=0$, $\mathcal{S}_{CP}=\sin2\phi_1$

Additional motivation for studying charmonium $b \to (c\bar{c})d$

Using the results from $B^0 \to J/\psi \pi^0$ and SU(3) symmetry, the penguin pollution in $B^0 \to J/\psi K^0_S$ can be estimated

We (Elena Nedelkovska-Cousins :P) will talk about $B^0 o \psi(2S)\pi^0$ at DPG 2012

14

The B factories have evidence for CP violation in $b \to c\bar{c}d$

Color allowed $b \to c \bar c d$ modes covered by Karlsruhe

$$B^0 \to D^+ D^-$$
 by Marcus Röhrken

$$B^0 \to D^{\ast +} D^{\ast -}$$
 by Bastian Kronenbitter

$$B^0 \to D^{*\pm} D^{\mp}$$
 by Daniel Stemmer

Flavour Changing Neutral Currents forbidden at tree level

Penguin amplitudes highly sensitive to New Physics

Could be affected by a heavy unknown particle in the loop

Standard Model: $A_f = \sum_{q=u,c,t} V_{qb}^* V_{qs} P_q$, Apply unitarity constraint: $\sum_{q=u,c,t} V_{qb}^* V_{qs} = 0$

$$V_{ub}^*V_{us} \ll V_{cb}^*V_{cs} \text{ and } t\text{-quark dominance} \Rightarrow \frac{A_f}{A_f} = \frac{V_{cb}V_{cs}^*}{V_{cb}^*V_{cs}}$$

 $\mathcal{S}_{CP} = \sin 2\phi_1$, same as $b \to c\bar{c}s$

Predicted in SM to have higher CP asymmetries than $b\to c\bar cs$

hep-ph/0707.1323, hep-ph/0702252

Mode	$S_{CP} - \sin 2\phi_1$
$B^0 \to \eta' K_S^0$	0.01 ± 0.01
$B^0 o \phi K_S^0$	0.02 ± 0.01
$B^0 o \omega K_S^0$	0.13 ± 0.08
$B^0 \to \rho^0 K_S^0$	$-0.08^{+0.08}_{-0.12}$
$B^0 o K_S^0 \pi^0$	$0.07^{+0.05}_{-0.04}$
$B^0 \to K^+ K^- K_S^0$	$0.03^{+0.02}_{-0.03}$
$B^0 \to K^0_S K^0_S K^0_S$	$0.02^{+0.02}_{-0.03}$
$B^0 \to K_S^0 \pi^0 \pi^0$	$0.03^{+0.02}_{-0.03}$

But most $b\to sq\bar{q}$ measurements below $b\to c\bar{c}s$ measurements

More experimental precision required

The B factories have observed CP violation in 1 mode, $B^0 \to \eta' K^0_S$

BaBar, PRD 79 052003 (2009)

$$S_{CP} = 0.57 \pm 0.08 \pm 0.02$$

We (Ver :P) will talk about $B^0 \to \omega K^0_S$ tomorrow

Belle, PRL 98 031802 (2007)

$$S_{CP} = 0.64 \pm 0.10 \pm 0.04$$

18

Search for a NP phase with the variable,

$$\Delta S \equiv S_{CP}(b \to sq\bar{q}) - S_{CP}(B^0 \to J/\psi K_S^0)$$

We will be sensitive to a deviation as small as $\Delta \mathcal{S} \sim 0.1$

 V_{ub} carries the phase $e^{-i\phi_3}$

For tree amplitude,

The phase difference is $-2\phi_1-\phi_3-\phi_3$

Assuming a closed triangle, $2\phi_1+2\phi_3=2\pi-2\phi_2$

Expect $A_{CP} = 0$, $S_{CP} = \sin 2\phi_2$

Both tree and penguin amplitudes may contribute to the final state

Tree and penguin amplitudes carry different strong and weak phases

Direct CP violation, $\mathcal{A}_{CP} \neq 0$, is possible

Measure an effective ϕ_2

$$S_{CP} = \sqrt{1 - A_{CP}^2} \sin(2\phi_2 - 2\Delta\phi_2) = \sqrt{1 - A_{CP}^2} \sin 2\phi_2^{\text{eff}}$$

Can recover ϕ_2 with an SU(2) isospin analysis

M. Gronau and D. London, PRL 65, 3381 (1990)

Neglecting isospin breaking effects

Set of $B\to\pi^+\pi^-,\pi^+\pi^0,\pi^0\pi^0$ decays obey the amplitude relations

$$A_{+0} = \frac{1}{\sqrt{2}}A_{+-} + A_{00}, \quad \bar{A}_{-0} = \frac{1}{\sqrt{2}}\bar{A}_{+-} + \bar{A}_{00}$$

 $B^0 \to \pi^+\pi^0$ is a pure tree

Triangle bases align

 $\Delta\phi_2$ can be measured

 ϕ_2 determined up to an 8-fold ambiguity

 ϕ_2 measurements highlight the success of the Standard Model

Measured ϕ_2 in good agreement with SM prediction

Other $b \to u \bar{u} d$ modes covered by MPI

$$B^0 \to \pi^+\pi^-$$
 by Kolja Prothmann

$$B^0
ightarrow
ho^0
ho^0$$
 by Pit Vanhoefer

Expected ϕ_2 with 50 ab^{-1}

The uncertainty will go down to $\sim 1^\circ$

Roughly the same order as isospin breaking effects

After the Super Flavour Factories ...

The CKM paradigm is correct

Measurements move to Standard Model expectations

New Physics is found!

Disagreement between constraints in the Standard Model

Backup

Summary

Maximal Direct CP violation has been found in the Beer system (B system)!

Bayern des samma mir, Bayern und des bayrische Bier!

It is a direct consequence of the Bavarian Reinheitsgebot