QED Background at Belle Experiment

Elena Nedelkovska, Christian Kiesling, Susanne Koblitz <u>Max – Planck Institute for physics, Munich</u>

> Belle detector upgrade: Belle II
 > Expected background at Belle II
 > QED experiments performed at KEK
 > Comparison between data and MC
 > Summary and Conclusion

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG, 28th March – 1st April, 2011, Karlsruhe, Germany

DEPFET

tive Pixel Detec

Belle 1

Belle Detector Upgrade

Si ~ Detectors

Strips vs Pixels

Pixel Vertex Detector (PXD)

Silicon Vertex Detector at Belle II

- 4 layers
- DSSDs

4 cm

- z strips
- phi strips

has to handle harsh background at Belle II

Expected Background at Belle II

Machine background

• Beam – gas scattering (bremstrahlung and Coulomb scattering)

- Touschek effect (intra bunch scattering) \leftarrow this is expected to be
- Synchrotron Radiation

the main background

Luminosity – related background

increase by a factor of **40** (due to luminosity)

• Radiative Bhabha scattering

 $\gamma\gamma$ reactions

expected increase by a

factor **20**

What do we expect?

SuperKEKB Simulation: ~ 800 tracks per PXD frame (~ 13 000 tracks, SuperB Simulation)

QED Background Runs in Belle

Real data to solve the MC puzzle

➤ A few MeV cannot be triggered at Belle

Random Triggers (unbiased background)

L (/nbs)

- ➤ vary luminosity
- look at change in # hits in SVD
 extrapolate to L = 0 to estimate non - QED machine background

Background events generated by 3 sources:

- ✤ B physics (few)
- ✤ Machine background

depends only on luminosity and not on the particular beam setting

* QED

Performed QED experiments

Random Trigger Runs and Data Sample :

Hit Multiplicity in SVD

SVD hit multiplicity in the 1st SVD layer

$$R = \langle N_{hits} \rangle = 113$$

Hit Rate decreases

$$R = < N_{hits} > = 103$$

we really see an effect !

Luminosity Of Observed **Background Hits** SVD Hits 140 120 100 R~20 **Big Surprise: very different** behavior sin 280 280 260 leaend expA expB expC 240 220 use the CDC hits 200 12 14 to correct for the L(/nbs) 180 non - QED160 background 140 Ncdc_{hits_max} 120 $Nsvd_{hits_corr.} = Nsvd_{hits} \times d_{hits}$ 100 10 5 8 б $Ncdc_{hits}$ L(/nbs)

Observed Excess Of Hits For All Measurements

> All Layers and All Experiments included

Use Full Detector Simulation

➢ to determine how many hits a track produces in each SVD layer
 □ SVD hit multiplicity – z strips (similar for \$\varphi\$ strips)

Simulation shows discrepancy from naive expectation

1st SVD layer

Naive Expectation:1 track hits1stSVD layer only onceSimulation:1 track hits1stSVD layer more than once

Comparison Between Data And Monte Carlo

MC vs. Data	Data			SuperB
	average	QED	KW	(BDK)
Hits (1 st SVD layer)	~ 100	13.3±2.6	11.31	181
Hits (2 nd – 4 th SVD layer)	~ 45	-2.9 ± 2.1	2.38	38.1
Occupancy (1 st SVD layer)	0.4%		0.3%	5.5%
tolerable deadly				
The expectation fully consistent with experiment, SuperB is completely excluded				

Summary and Conclusion

□ Strong discrepancies in MC predictions for QED Background between Belle II and SuperB

□ Use measurements with different beam tunings to extract QED background hits in SVD2

□ Measurements show additional luminosity – dependent background which is clearly observed in the CDC

 \Box Δ hits for layer 1 of SVD2 very different from prior expectation (outer layers in agreement) \longrightarrow "curlers"

□ Full MC simulation explains this observation and gives consistent picture of measurements

 \Box Comparison of measured Δ hits with predictions of different MC generators is consistent, allows complete exclusion of SuperB prediction

 \Box Expected occupancy from QED for layer 1 is only 0.3 % \rightarrow safe operation¹⁵

Thank you for your attention

Back Up

Experiment B – Run 408

 \Box SVD hit multiplicity – z strips (similar for φ strips)

CDC Hits Corrected SVD Hits

CDC Hits Corrected SVD Hits

 $> 2^{nd} - 4^{th}$ SVD layer – Experiment B

CDC Hits Corrected SVD Hits

 $> 2^{nd} - 4^{th}$ SVD layer – Experiment C

