Study of the decay of $B \to \omega K_s$ at Belle

Veronika Chobanova, Jeremy Dalseno, Christian Kiesling, Susanne Koblitz

DPG Frühjahrstagung Karlsruhe April 1, 2011

Physical Motivation Analysis at MPI B Reconstruction Summary and outlook

B Reconstruction

CKM Matrix

$$\left(egin{array}{c} d \ s \ b \end{array}
ight)_{
m weak} = V_{
m CKM} \left(egin{array}{c} d \ s \ b \end{array}
ight)_{
m mass} \equiv \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{c} d \ s \ b \end{array}
ight)_{
m mass}$$

CKM matrix is unitary $\Rightarrow V_{ud} \cdot V_{ub}^* + V_{cd} \cdot V_{cb}^* + V_{td} \cdot V_{tb}^* = 0$ (ρ,η)

Decays via charmless $b \to sq\bar{q}$ (like $B \to \omega K_s$) transitions sensitive to ϕ_1

Physical Motivation

Wolfenstein parametrisation

$$V_{
m CKM} = \left(egin{array}{ccc} 1 & \lambda & \lambda^3(
ho-i\eta) \ \lambda & 1 & \lambda^2 \ \lambda^3(1-
ho-i\eta) & \lambda^2 & 1 \end{array}
ight) + \mathcal{O}(\lambda^4)$$

 $\lambda = \sin \theta_C \approx 0.22, \, \theta_C$: Cabibbo angle

Matrix elements for the two Feynman diagrams:

- $M_{tree} \propto \frac{V_{ub} \cdot V_{us}^*}{3} \propto \frac{\lambda^3 \cdot \lambda}{3} \propto \frac{\lambda^4}{3}$
- $M_{penguin} \propto V_{tb} \cdot V_{ts}^* \propto 1 \cdot \lambda^2 \propto \lambda^2$
- ⇒ Decay is penguin-dominated

Physical Motivation

► Theory predicts in SM that $\sin 2\phi_1$ from $b \to sq\bar{q}$ should be larger than for $b \to c\bar{c}s$ ($S_f - \sin 2\phi_1 \epsilon$ (0.0; 0.2))

- But measurements could be systematically lower (hint of New Physics)
- ▶ Unknown particle in the loop could change measured $\sin 2\phi_1$
- ▶ Discovery of $A_{cp} \neq 0$ for B^+ decay could give evidence of another Feynmann diagramm and an unknown particle

Analysis at MPI

Ongoing analysis for two decays with the same kinematics:

$$B^0 \to \omega K_s$$
 and $B^+ \to \omega K^+$

- ▶ B^+ : No mixing-induced *CP*-Violation, can give us the value for A_{cp}
- ► The analysis consists of the following steps:
 - ► Generating Monte Carlo events for signal and background
 - ▶ Reconstruction of the particles B, ω, K_s
 - ▶ Fitting the observables ΔE , $F_{BB/qq}$, ω mass, ω helicity, Δt , q
 - Extracting the branching fraction

B Reconstruction

Physical Motivation

$$B^0 \to \omega K_s \to \pi^+ \pi^- \pi^0 K_s \to \pi^+ \pi^- \pi^0 \pi^+ \pi^- \pi^0 \pi^+ \pi^- \pi^0 \to \gamma \gamma$$

General selection criteria for the reconstruction

- ▶ For charged pions: $L_{K/\pi} < 0.9$ in order to separate them from the kaons
- ▶ For charged kaons (only B^+ decay): $L_{K/\pi} > 0.6$

 π^0 candidates

- ▶ $118~MeV/c^2 < m(\gamma\gamma) < 150~MeV/c^2$, mass fit $\chi^2 < 50$
- ullet $E_{\gamma} > 50 MeV$ in ECL barrel, $E_{\gamma} > 100 MeV$ in ECL endcap

Pi0 Mass

Summary and outlook

B reconstruction

 ω candidates 0.73 $GeV/c^2 < m(\pi^+\pi^-\pi^0) <$ 0.83 GeV/c^2 $(m(\omega) \pm 50~MeV))$

K_s candidates

- ▶ The reconstructed vertex must be shifted from the e^+e^- collision point, as the kaon decays much later than the ω
- ▶ $0.482~GeV/c^2 < m(\pi^+\pi^-) < 0.514~GeV/c^2~(m(K_s) \pm 16~MeV))$

B reconstruction

B⁰ candidates

- ▶ Best *B* selected with the beam-energy constrained mass $(M_{bc} = \sqrt{E_{beam}^{cms} p_B^{cms}})$ with E_{beam}^{cms} the beam energy and p_B^{cms} the reconstructed momentum of the *B*) closest to the nominal *B* mass $(5.28 \, \text{GeV}/c^2)$
- Additionally, $M_{bc} > 5.27 \ GeV/c^2$
- $ightharpoonup |\Delta E| < 0.15~GeV~{
 m with}~\Delta E = E_{B}^{cms} E_{beam}^{cms}$
- Vertex determined from $\pi^+\pi^-$ tracks of the ω
- Flavour tagging and tag-side vertexing algorithm applied for determination of the B flavour

Efficiency of the reconstruction module: 14.2% Misreconstruction fraction: 10%

Red: Botags, Blue: Bo-bar tags

Summary and outlook

- $ightharpoonup B^0
 ightarrow \omega K_s$ is an interesting decay channel, which can reveal knowledge about New Physics
- In progress: Study of the different backgrounds
- ► To do:
 - ▶ Fit to the variables ΔE , $F_{BB/qq}$, ω mass, ω helicity, Δt , q ▶ Extracting the CP parameters S_{cp} , A_{cp}

 - Extracting the branching fraction for the decay channel

