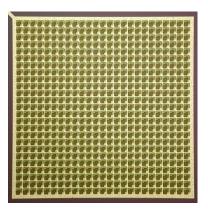
Precision measurement of photon detection efficiency of silicon photomultipliers

Michal Tesař, Johannes Sailer, Christian Jendrysik, Frank Simon, Jelena Ninković, Hans-Günther Moser, Rainer Richter

Max Planck Intitute for Physics

DPG Karlsruhe 29.3.2011

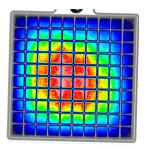


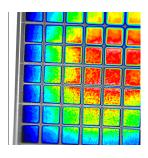
Outline

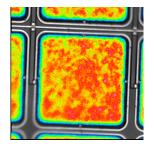
- Motivation
- Test setup
- Measurements & Results
- 4 Conclusions

Silicon Photomultipliers (SiPM)

- silicon photon detectors made of an array of avalanche photodiodes (APD)
- APDs are operated in Geiger mode (slightly above breakdown voltage)
- incident photon induces an avalanche
- the avalanche is quenched by a decrease of bias voltage over a quenching resistor

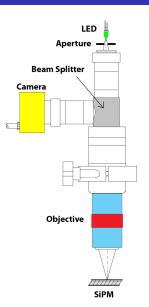



Goal of the study


Ultimate goal

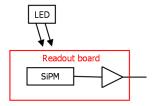
Discovering of sensitivity distribution of a SiPM over its area

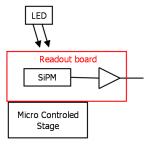
- separating signal from dark count and leakage current
- photon emission measurement in not capable of providing that information
- small light spot size allows us to perform such scan even within a single microcell

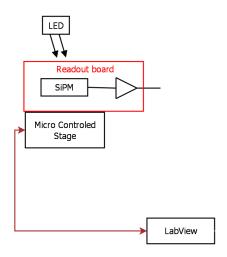


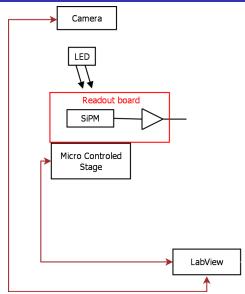
Photoemission images

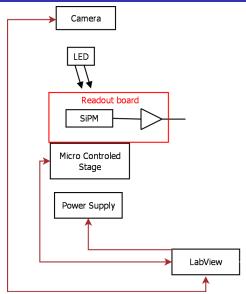
Basic idea of the setup

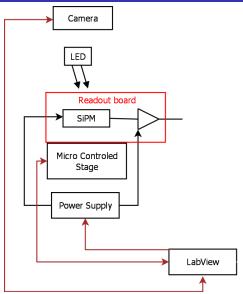

- light from an LED is focused to a small point $(\phi \sim 1.5 \ \mu m)$
- the LED is pulsed (10 ns long pulses, 10 000 shots per step)
- SiPM response is measured in coincidence with LED pulses
- the light beam is driven through any part a SiPM matrix in discrete steps (≥ 2 μm)
- a sensitivity scan of a 1 \times 1 mm² device with 2 μ m step size can be completed in \sim 10 hours

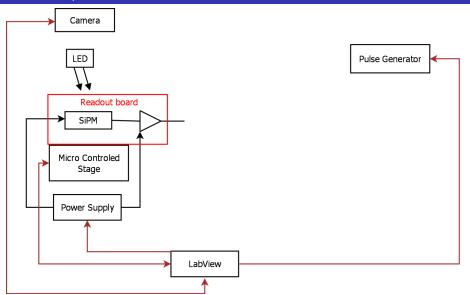


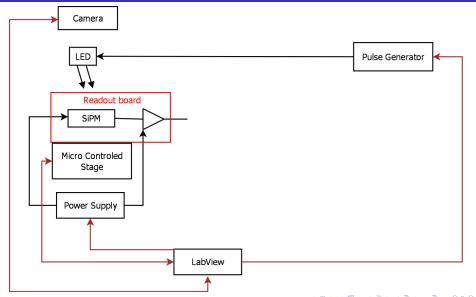

Measurement process



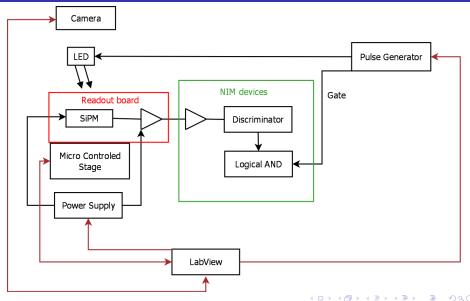

SiPM

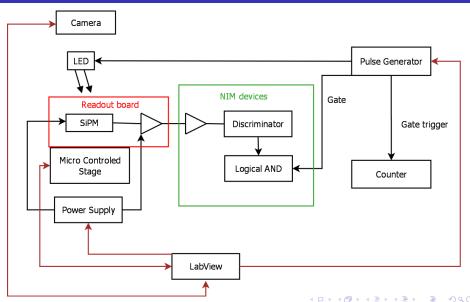


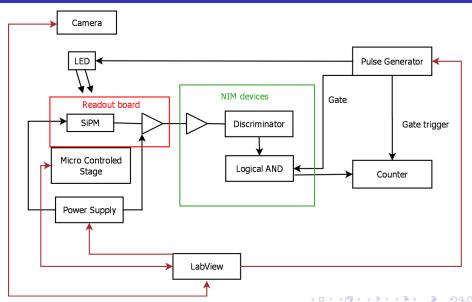


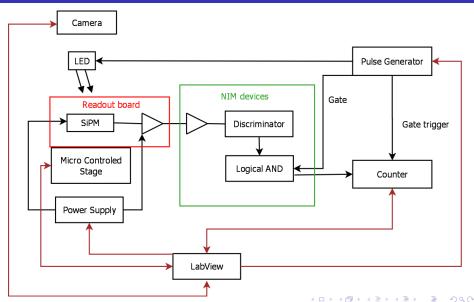




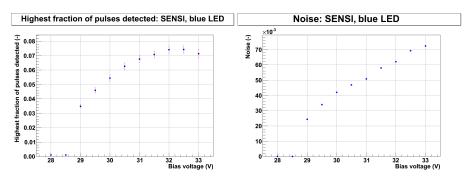








Quantities of interest

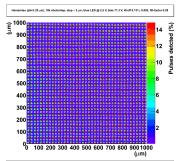

⇒ first of all, noise is determined and subtracted

Quantities of interest

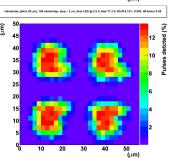
- noise
- fill factor (can be obtained separately for a single microcell)
- uniformity of efficiency over the device
- photon detection efficiency *
- normalisation with other absolute measurement needed
 - + bias voltage dependencies

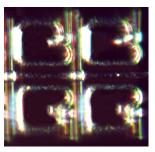
Bias voltage dependencies

- can be used as a cross check of stage calibration (LED focus), correct settings of thresholds etc.
- shows when quenching ceases
- possible later comparison of different wavelengths (further improvements needed)

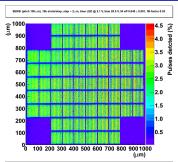


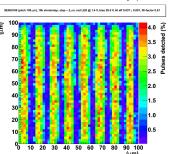
Device list

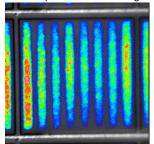

manufacturer	type	pixel pitch (μm)
Hamamatsu	S10362-11-025U, C	25
Hamamatsu	S10362-11-050U, C	50
Hamamatsu	S10362-11-100U, C	100
SENSI	SPMMicro1035X13	35
SENSI	SPMMicro1100X13	100
MEPhI/Pulsar	SiPM576#1	32
MEPhI/Pulsar	N/A	42

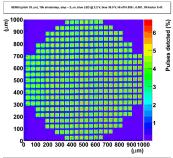

Table: Devices available for tests in MPI HLL

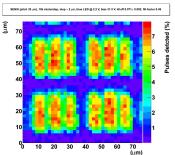
Results: Hamamatsu (MPPC) (25 μm pitch)

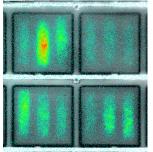


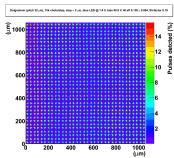

sensitive area is obviously significantly reduced by the quenching resistor placed on surface of the device


Results: SENSI (100 μm pitch)

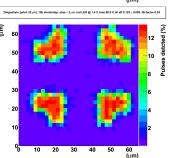


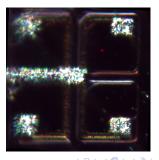

different quenching resistor shape can be observed on the sensitivity map


Results: SENSI (35 μm pitch)



different quenching resistor shape can be observed on the sensitivity map


Photo + photoemission image



Results: MEPhi (Dolgoshein) (32 µm pitch)

different quenching resistor shape can be observed on the sensitivity map

Conclusions

Accomplished

- new stage calibration developed
- new scanning procedure applied
- higher level of automation reached
- ⇒ scanning time reduced by three orders of magnitude
- ⇒ capability of scanning arbitrarily aligned SiPM surfaces

Future plans

- optimisation of data analysis
- scans of further devices
- normalisation with an absolute measurement
- light output estimation of used LEDs