

Progress and prospects in thermo-mechanical activities at Valencia

Carlos Lacasta, Arantza Oyanguren

(IFIC - Valencia)

- Thermal mock-up (reminder)
- First studies of cooling:
 - Effect of beam pipe temperature on the inner ladder
 - Effect of air flow cooling on the inner and on the outer ladders

Outlook

• Cooling block materials:

Properties:	Y Ni	KARA AND AND AND AND AND AND AND AND AND AN	Alsimg	→ Going to MPI for pressure tests <u>Stainless steel</u>
Therm. conduct. (W/mK):	30	13	140	15
CTE (um/m°C):	18	14	21	17
Resistence (N/mm ²):	400	1200	310 (?)	650
Comments :	Residual magnetism Porous (!)	- Difficult to machine (polish, drill, etc.) - Non magnetic	-"malleable" (to drill, polish) -Non magnetic	Pores and leaks in our samples (leaks by manipulation)

• Dummy ladders:

• Thermal contact between cooling block and ladder

- $\rightarrow \Delta T$ strongly depends on the thermal contact
 - \rightarrow Thermal paste + screws
 - →Quite difficult to thread on CrCo, at present using double sided thermal tape (thermal conductivity = 0.8 W/mK)

• Effect of beam-pipe temperature on the inner layer

- Cooling beam pipe with chiller
- End flanges at room temperature (stainless steel)
- Transparent polycarbonate dummies
- Measure temperature on first layer with IR camera (calibrated with PT100s)

\rightarrow Impact of several degrees on first layer (under these conditions)

Arantza Oyanguren

• Effect of air flow cooling

- Beam pipe at room temperature (can be cooled with chiller ightarrow 15 °C) .
- CrCo end flanges (2), cooled down with CO₂ (~12bar)
- Cu ladders with heaters:
 - Power dissipated along ladder: $1W \rightarrow T \sim 30^{\circ}C$;
 - 4 inner ladders, only one with heater
 - 1 outer ladder with heater
- Air flow: dry air at ~ room temperature (20°C) or cooled down with liquid N_2
- Measure temperature on inner and outer ladders with IR camera, calibrated with PT100s and Tipp-ex marks (ε=0.95)
- Room: T=24° C, Humidity=8%

Thermal images:

Switching the heaters on

 \rightarrow Real temperature given by Tipp-ex marks (ϵ =0.95) (global image emissivity)

 \rightarrow Emissivity of other materials have to be corrected

 $[\rightarrow$ Ice emmisivity ~ 0.97 \rightarrow frost (slightly, H=8%) give approximate temperature]

INSTITUTO DE FÍSICA CORPUSCULAR

- Heaters on
- Air flow at 20 °C (~2m/s)
- Cooling blocks at room T

- Heaters on
- Air flow at 20 °C
- Cooling blocks with CO_2 (12bar)

- → Not good thermal contact (thermal tape)
- \rightarrow Cooling blocks at -31 $^{\circ}\mathrm{C}$
- → Images still to be analized, PT100s and Tipp-ex marks show a few degrees for inner ladder (IL) (worst thermal contact) and -6 °C for outer ladder (OL).
- $\rightarrow\,$ Switching off the air flow \rightarrow 4 °C (IL) $\,$ -10 °C (OL) $\,$
- $\rightarrow\,$ Cooling the beam pipe at 15 °C $\,\rightarrow\,$ no effect

 \rightarrow Tests by cooling the air with liquid N₂ \rightarrow difficult to control the temperature, inner and outer ladders at – few degrees.

- At present welding pipes for several cooling blocks (AlSiMg and CrCo)
 - AlSiMg: stainless steel pipes cannot be directly welded \rightarrow trying with aluminium pipes (resistent to CO₂ pressure??)
 - Problems in the welding process: blocked pipes, have to be removed and re-welded
- Next tests:
 - Cooling with AlSiMg end flanges (CO₂) \rightarrow ladders screwed, better thermal contact
 - Cold air flow: find a way to control the $\rm N_2$ liquid coolant \rightarrow Air flow regime studies
 - Effect of adding heaters, closing the volume

- Improve the thermal contact in the CrCo samples (how to thread the samples, use implants of other materials...?)

Backup

Belle II

7th International Workshop on DEPFET Detectors and Applications

Arantza Oyanguren

7th International Workshop on DEPFET Detectors and Applications

22