

LMU München - Excellence Cluster Universe

Report on Firmware Project

Stefan Rummel

Overview

- Project overview
- Concept & functionality
 - User interface
 - MCU
 - Interface
 - Slow control

Project overview

- Via Fortiss gGmbH see presentations in Bonn
- Local project leader Dr. Buckl, implementation Dipl. Inf. Mr. Barner
- Current status:
 - Monthly meetings
 - FMEA "What can go wrong in the PS and what is the impact on the detector?"
 - Collection of requirements there
 - MCU selected (ARM M3, ST connectivity series)

System overview

- User Interface
- Slow control process & logging via NSM
- Interface layer via ETH
- Steering via Microcontroller

Concept User Interface

Assumption: Typical user/shifty is NOT a DEPFET expert

- ightarrow Critical things must be handled automatically
 - Start Stop procedures
 - Error Handling (Over Current, Regulator failures)
 - Shutdown in case of problems
 - Retry of Start procedure on user-request
- → Expert mode with full control
 - Change Voltages, Current Limits,

Functionality – MCU level

- Implementation changes should be possible with free tools
 - GNU tool chain
 - Free RTOS deterministic behavior
 - Boot loader via ETH (JTAG as backup)
 - Documented and commented code
- Startup- Shutdown sequence / (ramping up/down voltages)
 - Readout (DHP, DCD, SW_DVDD)
 - Confirm Switcher Configuration
 - Steering Voltages
 - Source/HV
- Periodic monitoring of status (voltages, current ...)
- Nominal parameters stored locally
 - → Periodic checking
- Reporting of status (Voltages, Currents, Status Bits, Secondary Voltages, Temperature)

Functionality - MCU level

- Self tests @ Startup / Running
 - ADC (sanity check of code)
 - DAC (via integrated MUX, read back of registers)
 - Current limit amplifier (status bit @ current limit 0A, small test voltage)
 - OVP & Shutdowns (shutdown functionality via voltage)
 - Check secondary voltages and current (per 4 Channel module)
- MCU watchdog via edge triggered periodic reset initiates hardware shutdown in case of MCU failure
- Interlock for cooling (proposal: TTL COOLING_IS_ALIVE signal)
- Reasonable behavior in case of connection loss to Slow Control

Functionality - Interface

- Interface between MCU's and Slow Control done via Ethernet
- Status messages send via UDP
- Commands TCP/IP
- Supports broadcasts e.g. Start, Stop, Calibration of steering voltages (Gate_ON, CCG, Clear_Low...)

Functionality – Slow Control

- Receiving status messages
- Send / Broadcast of commands
 - Start, shutdown, calibration of steering voltages
 - Adapt voltages and current limits
- User frontend
 - Visualization of PS-system
 - System status
 - Module status
 - Voltages, Currents
 - Secondary Voltages
 - Temperatures (MCU, sel. Voltages)
 - Status Bits (Regulator, OVP)
 - Error messages
 - Different levels of control Expert / User
- Interface to
 - BELLE II slow control NSM for logging
 - Interface to DAQ to receive status of Switcher configuration TBD
 - Cooling plant

Summary

- Firmware effort has started
- Collection of requirements is there still open for changes contributions
- Timeline
 - Implementation till next year than debugging/testing phase
 - Implementation of Slow Control starts in parallel
 - Next steps next month first steps with evaluation boards (MCU, ADC, DAC)
 - Late summer test with actual hardware

Stefan Rummel